opm-simulators/opm/autodiff/BlackoilModelEbos.hpp
Andreas Lauser 7f8120d609 flow: do not set the ExportGlobalTransmissibility property anymore
this has not been required anymore since the output code was moved to
the ebos core.
2018-07-11 13:49:17 +02:00

1139 lines
47 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015, 2016, 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/WellConnectionAuxiliaryModule.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/common/utility/parameters/ParameterGroup.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/autodiff/ISTLSolver.hpp>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/common/parallel/collectivecommunication.hh>
#include <dune/common/timer.hh>
#include <dune/common/unused.hh>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
#include <vector>
#include <algorithm>
//#include <fstream>
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_STRING_PROP(EclFlowProblem, EclOutputDir, "");
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
// default in flow is to formulate the equations in surface volumes
SET_BOOL_PROP(EclFlowProblem, BlackoilConserveSurfaceVolume, true);
SET_BOOL_PROP(EclFlowProblem, UseVolumetricResidual, false);
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
SET_BOOL_PROP(EclFlowProblem, EnablePolymer, false);
SET_BOOL_PROP(EclFlowProblem, EnableSolvent, false);
SET_BOOL_PROP(EclFlowProblem, EnableTemperature, true);
SET_BOOL_PROP(EclFlowProblem, EnableEnergy, false);
}}
namespace Opm {
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
template <class TypeTag>
class BlackoilModelEbos
{
public:
// --------- Types and enums ---------
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef double Scalar;
static const int numEq = Indices::numEq;
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
static const int temperatureIdx = Indices::temperatureIdx;
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef ISTLSolver< MatrixBlockType, VectorBlockType, Indices::pressureSwitchIdx > ISTLSolverType;
//typedef typename SolutionVector :: value_type PrimaryVariables ;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
BlackoilWellModel<TypeTag>& well_model,
BlackoilAquiferModel<TypeTag>& aquifer_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, grid_(ebosSimulator_.vanguard().grid())
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
, phaseUsage_(phaseUsageFromDeck(eclState()))
, has_disgas_(FluidSystem::enableDissolvedGas())
, has_vapoil_(FluidSystem::enableVaporizedOil())
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
, has_energy_(GET_PROP_VALUE(TypeTag, EnableEnergy))
, param_( param )
, well_model_ (well_model)
, aquifer_model_(aquifer_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, dx_old_(UgGridHelpers::numCells(grid_))
{
// compute global sum of number of cells
global_nc_ = detail::countGlobalCells(grid_);
if (!istlSolver_)
{
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
}
}
bool isParallel() const
{ return grid_.comm().size() > 1; }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
/// Called once before each time step.
/// \param[in] timer simulation timer
void prepareStep(const SimulatorTimerInterface& timer)
{
// update the solution variables in ebos
if ( timer.lastStepFailed() ) {
ebosSimulator_.model().updateFailed();
} else {
ebosSimulator_.model().advanceTimeLevel();
}
// set the timestep size and episode index for ebos explicitly. ebos needs to
// know the report step/episode index because of timing dependend data
// despide the fact that flow uses its own time stepper. (The length of the
// episode does not matter, though.)
Scalar t = timer.simulationTimeElapsed();
ebosSimulator_.startNextEpisode(/*episodeStartTime=*/t, /*episodeLength=*/1e30);
ebosSimulator_.setEpisodeIndex(timer.reportStepNum());
ebosSimulator_.setTime(t);
ebosSimulator_.setTimeStepSize(timer.currentStepLength());
ebosSimulator_.setTimeStepIndex(ebosSimulator_.timeStepIndex() + 1);
ebosSimulator_.problem().beginTimeStep();
unsigned numDof = ebosSimulator_.model().numGridDof();
wasSwitched_.resize(numDof);
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
wellModel().beginTimeStep(timer.reportStepNum(), timer.simulationTimeElapsed());
if (param_.update_equations_scaling_) {
std::cout << "equation scaling not suported yet" << std::endl;
//updateEquationsScaling();
}
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template <class NonlinearSolverType>
SimulatorReport nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver)
{
SimulatorReport report;
failureReport_ = SimulatorReport();
Dune::Timer perfTimer;
perfTimer.start();
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = 0.0;
}
report.total_linearizations = 1;
try {
report += assemble(timer, iteration);
report.assemble_time += perfTimer.stop();
}
catch (...) {
report.assemble_time += perfTimer.stop();
failureReport_ += report;
// todo (?): make the report an attribute of the class
throw; // continue throwing the stick
}
std::vector<double> residual_norms;
perfTimer.reset();
perfTimer.start();
// the step is not considered converged until at least minIter iterations is done
report.converged = getConvergence(timer, iteration,residual_norms) && iteration > nonlinear_solver.minIter();
// checking whether the group targets are converged
if (wellModel().wellCollection().groupControlActive()) {
report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
}
report.update_time += perfTimer.stop();
residual_norms_history_.push_back(residual_norms);
if (!report.converged) {
perfTimer.reset();
perfTimer.start();
report.total_newton_iterations = 1;
// enable single precision for solvers when dt is smaller then 20 days
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
// Compute the nonlinear update.
const int nc = UgGridHelpers::numCells(grid_);
BVector x(nc);
try {
solveJacobianSystem(x);
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
}
catch (...) {
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
failureReport_ += report;
throw; // re-throw up
}
perfTimer.reset();
perfTimer.start();
// handling well state update before oscillation treatment is a decision based
// on observation to avoid some big performance degeneration under some circumstances.
// there is no theorectical explanation which way is better for sure.
wellModel().recoverWellSolutionAndUpdateWellState(x);
if (param_.use_update_stabilization_) {
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
}
// Apply the update, with considering model-dependent limitations and
// chopping of the update.
updateState(x);
report.update_time += perfTimer.stop();
}
return report;
}
void printIf(int c, double x, double y, double eps, std::string type) {
if (std::abs(x-y) > eps) {
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
}
}
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] timer simulation timer
void afterStep(const SimulatorTimerInterface& OPM_UNUSED timer)
{
wellModel().timeStepSucceeded(timer.simulationTimeElapsed());
aquiferModel().timeStepSucceeded(timer);
ebosSimulator_.problem().endTimeStep();
}
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
SimulatorReport assemble(const SimulatorTimerInterface& timer,
const int iterationIdx)
{
// -------- Mass balance equations --------
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
ebosSimulator_.problem().beginIteration();
ebosSimulator_.model().linearizer().linearize();
ebosSimulator_.problem().endIteration();
// -------- Aquifer models ----------
try
{
// Modify the Jacobian and residuals according to the aquifer models
aquiferModel().assemble(timer, iterationIdx);
}
catch( ... )
{
OPM_THROW(Opm::NumericalIssue,"Error when assembling aquifer models");
}
// -------- Current time step length ----------
const double dt = timer.currentStepLength();
// -------- Well equations ----------
try
{
// assembles the well equations and applies the wells to
// the reservoir equations as a source term.
wellModel().assemble(iterationIdx, dt);
}
catch ( const Dune::FMatrixError& )
{
OPM_THROW(Opm::NumericalIssue,"Error encounted when solving well equations");
}
auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
if (param_.matrix_add_well_contributions_) {
wellModel().addWellContributions(ebosJac);
}
if ( param_.preconditioner_add_well_contributions_ &&
! param_.matrix_add_well_contributions_ ) {
matrix_for_preconditioner_ .reset(new Mat(ebosJac));
wellModel().addWellContributions(*matrix_for_preconditioner_);
}
return wellModel().lastReport();
}
// compute the "relative" change of the solution between time steps
double relativeChange() const
{
Scalar resultDelta = 0.0;
Scalar resultDenom = 0.0;
const auto& elemMapper = ebosSimulator_.model().elementMapper();
const auto& gridView = ebosSimulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
unsigned globalElemIdx = elemMapper.index(elem);
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
Scalar pressureNew;
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationNew = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx];
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
}
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
Scalar pressureOld;
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationOld = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx];
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
}
Scalar tmp = pressureNew - pressureOld;
resultDelta += tmp*tmp;
resultDenom += pressureNew*pressureNew;
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
resultDelta += tmp*tmp;
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
}
}
resultDelta = gridView.comm().sum(resultDelta);
resultDenom = gridView.comm().sum(resultDenom);
if (resultDenom > 0.0)
return resultDelta/resultDenom;
return 0.0;
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
return istlSolver().iterations();
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
void solveJacobianSystem(BVector& x) const
{
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
// J = [A, B; C, D], where A is the reservoir equations, B and C the interaction of well
// with the reservoir and D is the wells itself.
// The full system is reduced to a number of cells X number of cells system via Schur complement
// A -= B^T D^-1 C
// Instead of modifying A, the Ax operator is modified. i.e Ax -= B^T D^-1 C x in the WellModelMatrixAdapter.
// The residual is modified similarly.
// r = [r, r_well], where r is the residual and r_well the well residual.
// r -= B^T * D^-1 r_well
// apply well residual to the residual.
wellModel().apply(ebosResid);
// set initial guess
x = 0.0;
const Mat& actual_mat_for_prec = matrix_for_preconditioner_ ? *matrix_for_preconditioner_.get() : ebosJac;
// Solve system.
if( isParallel() )
{
typedef WellModelMatrixAdapter< Mat, BVector, BVector, BlackoilWellModel<TypeTag>, true > Operator;
Operator opA(ebosJac, actual_mat_for_prec, wellModel(),
istlSolver().parallelInformation() );
assert( opA.comm() );
istlSolver().solve( opA, x, ebosResid, *(opA.comm()) );
}
else
{
typedef WellModelMatrixAdapter< Mat, BVector, BVector, BlackoilWellModel<TypeTag>, false > Operator;
Operator opA(ebosJac, actual_mat_for_prec, wellModel());
istlSolver().solve( opA, x, ebosResid );
}
}
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template<class M, class X, class Y, class WellModel, bool overlapping >
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
{
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
#else
typedef Dune::CollectiveCommunication< Grid > communication_type;
#endif
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::SolverCategory::Category category() const override
{
return overlapping ?
Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential;
}
#else
enum {
//! \brief The solver category.
category = overlapping ?
Dune::SolverCategory::overlapping :
Dune::SolverCategory::sequential
};
#endif
//! constructor: just store a reference to a matrix
WellModelMatrixAdapter (const M& A,
const M& A_for_precond,
const WellModel& wellMod,
const boost::any& parallelInformation = boost::any() )
: A_( A ), A_for_precond_(A_for_precond), wellMod_( wellMod ), comm_()
{
#if HAVE_MPI
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
comm_.reset( new communication_type( info.communicator() ) );
}
#endif
}
virtual void apply( const X& x, Y& y ) const
{
A_.mv( x, y );
// add well model modification to y
wellMod_.apply(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
// y += \alpha * A * x
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
A_.usmv(alpha,x,y);
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual const matrix_type& getmat() const { return A_for_precond_; }
communication_type* comm()
{
return comm_.operator->();
}
protected:
const matrix_type& A_ ;
const matrix_type& A_for_precond_ ;
const WellModel& wellMod_;
std::unique_ptr< communication_type > comm_;
};
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const BVector& dx)
{
const auto& ebosProblem = ebosSimulator_.problem();
unsigned numSwitched = 0;
ElementContext elemCtx( ebosSimulator_ );
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
SolutionVector& solution = ebosSimulator_.model().solution( 0 /* timeIdx */ );
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
PrimaryVariables& priVars = solution[ cell_idx ];
const double& dp = dx[cell_idx][Indices::pressureSwitchIdx];
double& p = priVars[Indices::pressureSwitchIdx];
const double& dp_rel_max = dpMaxRel();
const int sign_dp = dp > 0 ? 1: -1;
p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max);
p = std::max(p, 0.0);
// Saturation updates.
const double dsw = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ? dx[cell_idx][Indices::waterSaturationIdx] : 0.0;
const double dxvar = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ? dx[cell_idx][Indices::compositionSwitchIdx] : 0.0;
double dso = 0.0;
double dsg = 0.0;
double drs = 0.0;
double drv = 0.0;
// determine the saturation delta values
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
dsg = dxvar;
}
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
drs = dxvar;
}
else {
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
drv = dxvar;
dsg = 0.0;
}
// solvent
const double dss = has_solvent_ ? dx[cell_idx][Indices::solventSaturationIdx] : 0.0;
// polymer
const double dc = has_polymer_ ? dx[cell_idx][Indices::polymerConcentrationIdx] : 0.0;
// oil
dso = - (dsw + dsg + dss);
// compute a scaling factor for the saturation update so that the maximum
// allowed change of saturations between iterations is not exceeded
double maxVal = 0.0;
maxVal = std::max(std::abs(dsw),maxVal);
maxVal = std::max(std::abs(dsg),maxVal);
maxVal = std::max(std::abs(dso),maxVal);
maxVal = std::max(std::abs(dss),maxVal);
double satScaleFactor = 1.0;
if (maxVal > dsMax()) {
satScaleFactor = dsMax()/maxVal;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
double& sw = priVars[Indices::waterSaturationIdx];
sw -= satScaleFactor * dsw;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
double& sg = priVars[Indices::compositionSwitchIdx];
sg -= satScaleFactor * dsg;
}
}
if (has_solvent_) {
double& ss = priVars[Indices::solventSaturationIdx];
ss -= satScaleFactor * dss;
ss = std::min(std::max(ss, 0.0),1.0);
}
if (has_polymer_) {
double& c = priVars[Indices::polymerConcentrationIdx];
c -= satScaleFactor * dc;
c = std::max(c, 0.0);
}
if (has_energy_) {
double& T = priVars[Indices::temperatureIdx];
const double dT = dx[cell_idx][Indices::temperatureIdx];
T -= dT;
}
// Update rs and rv
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ) {
unsigned pvtRegionIdx = ebosSimulator_.problem().pvtRegionIndex(cell_idx);
const double drmaxrel = drMaxRel();
if (has_disgas_) {
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
Scalar RsSat =
FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx, 300.0, p);
double& rs = priVars[Indices::compositionSwitchIdx];
rs -= ((drs<0)?-1:1)*std::min(std::abs(drs), RsSat*drmaxrel);
rs = std::max(rs, 0.0);
}
}
if (has_vapoil_) {
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
Scalar RvSat =
FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx, 300.0, p);
double& rv = priVars[Indices::compositionSwitchIdx];
rv -= ((drv<0)?-1:1)*std::min(std::abs(drv), RvSat*drmaxrel);
rv = std::max(rv, 0.0);
}
}
}
// Add an epsilon to make it harder to switch back immediately after the primary variable was changed.
if (wasSwitched_[cell_idx])
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx, 1e-5);
else
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx);
if (wasSwitched_[cell_idx])
++numSwitched;
}
// if the solution is updated the intensive Quantities need to be recalculated
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
template <class CollectiveCommunication>
double convergenceReduction(const CollectiveCommunication& comm,
const double pvSumLocal,
std::vector< Scalar >& R_sum,
std::vector< Scalar >& maxCoeff,
std::vector< Scalar >& B_avg)
{
// Compute total pore volume (use only owned entries)
double pvSum = pvSumLocal;
if( comm.size() > 1 )
{
// global reduction
std::vector< Scalar > sumBuffer;
std::vector< Scalar > maxBuffer;
const int numComp = B_avg.size();
sumBuffer.reserve( 2*numComp + 1 ); // +1 for pvSum
maxBuffer.reserve( numComp );
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
sumBuffer.push_back( B_avg[ compIdx ] );
sumBuffer.push_back( R_sum[ compIdx ] );
maxBuffer.push_back( maxCoeff[ compIdx ] );
}
// Compute total pore volume
sumBuffer.push_back( pvSum );
// compute global sum
comm.sum( sumBuffer.data(), sumBuffer.size() );
// compute global max
comm.max( maxBuffer.data(), maxBuffer.size() );
// restore values to local variables
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
{
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
++buffIdx;
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
}
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
}
// restore global pore volume
pvSum = sumBuffer.back();
}
// return global pore volume
return pvSum;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector<double>& residual_norms)
{
typedef std::vector< Scalar > Vector;
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_cnv_relaxed = param_.tolerance_cnv_relaxed_;
const int numComp = numEq;
Vector R_sum(numComp, 0.0 );
Vector B_avg(numComp, 0.0 );
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
double pvSumLocal = 0.0;
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double pvValue = ebosProblem.porosity(cell_idx) * ebosModel.dofTotalVolume( cell_idx );
pvSumLocal += pvValue;
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
B_avg[ compIdx ] += 1.0 / fs.invB(phaseIdx).value();
const auto R2 = ebosResid[cell_idx][compIdx];
R_sum[ compIdx ] += R2;
maxCoeff[ compIdx ] = std::max( maxCoeff[ compIdx ], std::abs( R2 ) / pvValue );
}
if ( has_solvent_ ) {
B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value();
const auto R2 = ebosResid[cell_idx][contiSolventEqIdx];
R_sum[ contiSolventEqIdx ] += R2;
maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue );
}
if (has_polymer_ ) {
B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx];
R_sum[ contiPolymerEqIdx ] += R2;
maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue );
}
if (has_energy_ ) {
B_avg[ contiEnergyEqIdx ] += 1.0;
const auto R2 = ebosResid[cell_idx][contiEnergyEqIdx];
R_sum[ contiEnergyEqIdx ] += R2;
maxCoeff[ contiEnergyEqIdx ] = std::max( maxCoeff[ contiEnergyEqIdx ], std::abs( R2 ) / pvValue );
}
}
// compute local average in terms of global number of elements
const int bSize = B_avg.size();
for ( int i = 0; i<bSize; ++i )
{
B_avg[ i ] /= Scalar( global_nc_ );
}
// TODO: we remove the maxNormWell for now because the convergence of wells are on a individual well basis.
// Anyway, we need to provide some infromation to help debug the well iteration process.
// compute global sum and max of quantities
const double pvSum = convergenceReduction(grid_.comm(), pvSumLocal,
R_sum, maxCoeff, B_avg);
Vector CNV(numComp);
Vector mass_balance_residual(numComp);
bool converged_MB = true;
bool converged_CNV = true;
// Finish computation
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[compIdx] < tol_mb);
if (iteration < param_.max_strict_iter_)
converged_CNV = converged_CNV && (CNV[compIdx] < tol_cnv);
else
converged_CNV = converged_CNV && (CNV[compIdx] < tol_cnv_relaxed);
residual_norms.push_back(CNV[compIdx]);
}
const bool converged_Well = wellModel().getWellConvergence(B_avg);
bool converged = converged_MB && converged_Well;
converged = converged && converged_CNV;
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
std::vector< std::string > key( numComp );
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
key[ compIdx ] = std::toupper( compName.front() );
}
if (has_solvent_) {
key[ solventSaturationIdx ] = "S";
}
if (has_polymer_) {
key[ polymerConcentrationIdx ] = "P";
}
if (has_energy_) {
key[ temperatureIdx ] = "E";
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " MB(" + key[ compIdx ] + ") ";
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " CNV(" + key[ compIdx ] + ") ";
}
OpmLog::debug(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << mass_balance_residual[compIdx];
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << CNV[compIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::debug(ss.str());
}
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
if (std::isnan(mass_balance_residual[compIdx])
|| std::isnan(CNV[compIdx])) {
OPM_THROW(Opm::NumericalIssue, "NaN residual for " << compName << " equation");
}
if (mass_balance_residual[compIdx] > maxResidualAllowed()
|| CNV[compIdx] > maxResidualAllowed()) {
OPM_THROW(Opm::NumericalIssue, "Too large residual for " << compName << " equation");
}
if (mass_balance_residual[compIdx] < 0
|| CNV[compIdx] < 0) {
OPM_THROW(Opm::NumericalIssue, "Negative residual for " << compName << " equation");
}
}
return converged;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return phaseUsage_.num_phases;
}
/// Wrapper required due to not following generic API
template<class T>
std::vector<std::vector<double> >
computeFluidInPlace(const T&, const std::vector<int>& fipnum) const
{
return computeFluidInPlace(fipnum);
}
/// Should not be called
std::vector<std::vector<double> >
computeFluidInPlace(const std::vector<int>& /*fipnum*/) const
{
//assert(true)
//return an empty vector
std::vector<std::vector<double> > regionValues(0, std::vector<double>(0,0.0));
return regionValues;
}
const Simulator& ebosSimulator() const
{ return ebosSimulator_; }
Simulator& ebosSimulator()
{ return ebosSimulator_; }
/// return the statistics if the nonlinearIteration() method failed
const SimulatorReport& failureReport() const
{ return failureReport_; }
protected:
const ISTLSolverType& istlSolver() const
{
assert( istlSolver_ );
return *istlSolver_;
}
// --------- Data members ---------
Simulator& ebosSimulator_;
const Grid& grid_;
const ISTLSolverType* istlSolver_;
const PhaseUsage phaseUsage_;
const bool has_disgas_;
const bool has_vapoil_;
const bool has_solvent_;
const bool has_polymer_;
const bool has_energy_;
ModelParameters param_;
SimulatorReport failureReport_;
// Well Model
BlackoilWellModel<TypeTag>& well_model_;
// Aquifer Model
BlackoilAquiferModel<TypeTag>& aquifer_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
long int global_nc_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
BVector dx_old_;
std::unique_ptr<Mat> matrix_for_preconditioner_;
public:
/// return the StandardWells object
BlackoilWellModel<TypeTag>&
wellModel() { return well_model_; }
const BlackoilWellModel<TypeTag>&
wellModel() const { return well_model_; }
BlackoilAquiferModel<TypeTag>&
aquiferModel() { return aquifer_model_; }
void beginReportStep()
{
ebosSimulator_.problem().beginEpisode();
}
void endReportStep()
{
ebosSimulator_.problem().endEpisode();
}
private:
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
public:
std::vector<bool> wasSwitched_;
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED