opm-simulators/opm/simulators/aquifers/AquiferCarterTracy.hpp
2021-09-21 11:08:10 +02:00

242 lines
8.5 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <exception>
#include <memory>
#include <stdexcept>
#include <utility>
namespace Opm
{
template <typename TypeTag>
class AquiferCarterTracy : public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(aquct_data.aquiferID, connections, ebosSimulator)
, aquct_data_(aquct_data)
{}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
}
this->fluxValue_ = this->W_flux_.value();
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&this->fluxValue_, 1);
}
data::AquiferData aquiferData() const
{
data::AquiferData data;
data.aquiferID = this->aquiferID();
// TODO: not sure how to get this pressure value yet
data.pressure = this->pa0_;
data.fluxRate = 0.;
for (const auto& q : this->Qai_) {
data.fluxRate += q.value();
}
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
auto* aquCT = data.typeData.template create<data::AquiferType::CarterTracy>();
aquCT->dimensionless_time = this->dimensionless_time_;
aquCT->dimensionless_pressure = this->dimensionless_pressure_;
aquCT->influxConstant = this->aquct_data_.influxConstant();
if (!this->co2store_()) {
aquCT->timeConstant = this->aquct_data_.timeConstant();
aquCT->waterDensity = this->aquct_data_.waterDensity();
aquCT->waterViscosity = this->aquct_data_.waterViscosity();
} else {
aquCT->waterDensity = this->rhow_;
aquCT->timeConstant = this->Tc_;
const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr * this->aquct_data_.inner_radius * this->aquct_data_.inner_radius;
aquCT->waterViscosity = this->Tc_ * this->aquct_data_.permeability / x;
}
return data;
}
protected:
// Variables constants
AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar fluxValue_{0}; // value of flux
Scalar dimensionless_time_{0};
Scalar dimensionless_pressure_{0};
void assignRestartData(const data::AquiferData& xaq) override
{
this->fluxValue_ = xaq.volume;
this->rhow_ = this->aquct_data_.waterDensity();
}
std::pair<Scalar, Scalar>
getInfluenceTableValues(const Scalar td_plus_dt)
{
// We use the opm-common numeric linear interpolator
this->dimensionless_pressure_ =
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
this->dimensionless_time_);
const auto PItd =
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
const auto PItdprime =
linearInterpolationDerivative(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
return std::make_pair(PItd, PItdprime);
}
Scalar dpai(const int idx) const
{
const auto gdz =
this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth());
const auto dp = this->pa0_ + this->rhow_*gdz
- this->pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
std::pair<Scalar, Scalar>
calculateEqnConstants(const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
this->dimensionless_time_ = simulator.time() / this->Tc_;
const auto [PItd, PItdprime] = this->getInfluenceTableValues(td_plus_dt);
const auto denom = this->Tc_ * (PItd - this->dimensionless_time_*PItdprime);
const auto a = (this->beta_*dpai(idx) - this->fluxValue_*PItdprime) / denom;
const auto b = this->beta_ / denom;
return std::make_pair(a, b);
}
std::size_t pvtRegionIdx() const
{
return this->aquct_data_.pvttableID - 1;
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const auto [a, b] = this->calculateEqnConstants(idx, simulator);
this->Qai_.at(idx) = this->alphai_.at(idx) *
(a - b*(this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
}
inline void calculateAquiferConstants() override
{
if(this->co2store_()) {
const auto press = this->aquct_data_.initial_pressure.value();
Scalar temp = FluidSystem::reservoirTemperature();
if (this->aquct_data_.initial_temperature.has_value())
temp = this->aquct_data_.initial_temperature.value();
Scalar rs = 0.0; // no dissolved CO2
Scalar waterViscosity = FluidSystem::oilPvt().viscosity(pvtRegionIdx(), temp, press, rs);
const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr * this->aquct_data_.inner_radius * this->aquct_data_.inner_radius;
this->Tc_ = waterViscosity * x / this->aquct_data_.permeability;
} else {
this->Tc_ = this->aquct_data_.timeConstant();
}
this->beta_ = this->aquct_data_.influxConstant();
}
inline void calculateAquiferCondition() override
{
if (this->solution_set_from_restart_) {
return;
}
if (! this->aquct_data_.initial_pressure.has_value()) {
this->aquct_data_.initial_pressure =
this->calculateReservoirEquilibrium();
const auto& tables = this->ebos_simulator_.vanguard()
.eclState().getTableManager();
this->aquct_data_.finishInitialisation(tables);
}
this->pa0_ = this->aquct_data_.initial_pressure.value();
if(this->co2store_()) {
const auto press = this->aquct_data_.initial_pressure.value();
Scalar temp = FluidSystem::reservoirTemperature();
if (this->aquct_data_.initial_temperature.has_value())
temp = this->aquct_data_.initial_temperature.value();
Scalar rs = 0.0; // no dissolved CO2
Scalar waterDensity = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx(), temp, press, rs)
* FluidSystem::oilPvt().oilReferenceDensity(pvtRegionIdx());
this->rhow_ = waterDensity;
} else {
this->rhow_ = this->aquct_data_.waterDensity();
}
}
virtual Scalar aquiferDepth() const override
{
return this->aquct_data_.datum_depth;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif