opm-simulators/opm/models/discretization/common/fvbaseelementcontext.hh

608 lines
22 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseElementContext
*/
#ifndef EWOMS_FV_BASE_ELEMENT_CONTEXT_HH
#define EWOMS_FV_BASE_ELEMENT_CONTEXT_HH
#include "fvbaseproperties.hh"
#include <dune/common/fvector.hh>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/discretization/common/linearizationtype.hh>
#include <opm/models/utils/alignedallocator.hh>
#include <vector>
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief This class stores an array of IntensiveQuantities objects, one
* intensive quantities object for each of the element's vertices
*/
template<class TypeTag>
class FvBaseElementContext
{
using Implementation = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
// the history size of the time discretization in number of steps
enum { timeDiscHistorySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
struct DofStore_ {
IntensiveQuantities intensiveQuantities[timeDiscHistorySize];
const PrimaryVariables* priVars[timeDiscHistorySize];
const IntensiveQuantities *thermodynamicHint[timeDiscHistorySize];
};
using DofVarsVector = std::vector<DofStore_>;
using ExtensiveQuantitiesVector = std::vector<ExtensiveQuantities>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using GradientCalculator = GetPropType<TypeTag, Properties::GradientCalculator>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
static const unsigned dimWorld = GridView::dimensionworld;
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
// we don't allow copies of element contexts!
FvBaseElementContext(const FvBaseElementContext& ) = delete;
public:
/*!
* \brief The constructor.
*/
explicit FvBaseElementContext(const Simulator& simulator)
: gridView_(simulator.gridView())
, stencil_(gridView_, simulator.model().dofMapper() )
{
// remember the simulator object
simulatorPtr_ = &simulator;
enableStorageCache_ = Parameters::get<TypeTag, Parameters::EnableStorageCache>();
stashedDofIdx_ = -1;
focusDofIdx_ = -1;
}
static void *operator new(size_t size)
{ return aligned_alloc(alignof(FvBaseElementContext), size); }
static void operator delete(void *ptr)
{ aligned_free(ptr); }
/*!
* \brief Construct all volume and extensive quantities of an element
* from scratch.
*
* \param elem The DUNE Codim<0> entity for which the volume
* variables ought to be calculated
*/
void updateAll(const Element& elem)
{
asImp_().updateStencil(elem);
asImp_().updateAllIntensiveQuantities();
asImp_().updateAllExtensiveQuantities();
}
/*!
* \brief Compute the finite volume geometry for an element.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updateStencil(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the stencil. the center gradients are quite expensive to calculate and
// most models don't need them, so that we only do this if the model explicitly
// enables them
stencil_.update(elem);
// resize the arrays containing the flux and the volume variables
dofVars_.resize(stencil_.numDof());
extensiveQuantities_.resize(stencil_.numInteriorFaces());
}
/*!
* \brief Update the primary topological part of the stencil, but nothing else.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updatePrimaryStencil(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the finite element geometry
stencil_.updatePrimaryTopology(elem);
dofVars_.resize(stencil_.numPrimaryDof());
}
/*!
* \brief Update the topological part of the stencil, but nothing else.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updateStencilTopology(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the finite element geometry
stencil_.updateTopology(elem);
}
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for all time indices.
*/
void updateAllIntensiveQuantities()
{
if (!enableStorageCache_) {
// if the storage cache is disabled, we need to calculate the storage term
// from scratch, i.e. we need the intensive quantities of all of the history.
for (unsigned timeIdx = 0; timeIdx < timeDiscHistorySize; ++ timeIdx)
asImp_().updateIntensiveQuantities(timeIdx);
}
else
// if the storage cache is enabled, we only need to recalculate the storage
// term for the most recent point of history (i.e., for the current iterative
// solution)
asImp_().updateIntensiveQuantities(/*timeIdx=*/0);
}
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for a single time index.
*
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updateIntensiveQuantities(unsigned timeIdx)
{ updateIntensiveQuantities_(timeIdx, numDof(timeIdx)); }
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for a single time index.
*
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updatePrimaryIntensiveQuantities(unsigned timeIdx)
{ updateIntensiveQuantities_(timeIdx, numPrimaryDof(timeIdx)); }
/*!
* \brief Compute the intensive quantities of a single sub-control volume of the
* current element for a single time index.
*
* \param priVars The PrimaryVariables which should be used to calculate the
* intensive quantities.
* \param dofIdx The local index in the current element of the sub-control volume
* which should be updated.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updateIntensiveQuantities(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
{ asImp_().updateSingleIntQuants_(priVars, dofIdx, timeIdx); }
/*!
* \brief Compute the extensive quantities of all sub-control volume
* faces of the current element for all time indices.
*/
void updateAllExtensiveQuantities()
{ asImp_().updateExtensiveQuantities(/*timeIdx=*/0); }
/*!
* \brief Compute the extensive quantities of all sub-control volume
* faces of the current element for a single time index.
*
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
void updateExtensiveQuantities(unsigned timeIdx)
{
gradientCalculator_.prepare(/*context=*/asImp_(), timeIdx);
for (unsigned fluxIdx = 0; fluxIdx < numInteriorFaces(timeIdx); fluxIdx++) {
extensiveQuantities_[fluxIdx].update(/*context=*/asImp_(),
/*localIndex=*/fluxIdx,
timeIdx);
}
}
/*!
* \brief Sets the degree of freedom on which the simulator is currently "focused" on
*
* I.e., in the case of automatic differentiation, all derivatives are with regard to
* the primary variables of that degree of freedom. Only "primary" DOFs can be
* focused on.
*/
void setFocusDofIndex(unsigned dofIdx)
{ focusDofIdx_ = dofIdx; }
/*!
* \brief Returns the degree of freedom on which the simulator is currently "focused" on
*
* \copydetails setFocusDof()
*/
unsigned focusDofIndex() const
{ return focusDofIdx_; }
/*!
* \brief Returns the linearization type.
*
* \copydetails setLinearizationType()
*/
LinearizationType linearizationType() const
{ return this->model().linearizer().getLinearizationType(); }
/*!
* \brief Return a reference to the simulator.
*/
const Simulator& simulator() const
{ return *simulatorPtr_; }
/*!
* \brief Return a reference to the problem.
*/
const Problem& problem() const
{ return simulatorPtr_->problem(); }
/*!
* \brief Return a reference to the model.
*/
const Model& model() const
{ return simulatorPtr_->model(); }
/*!
* \brief Return a reference to the grid view.
*/
const GridView& gridView() const
{ return gridView_; }
/*!
* \brief Return the current element.
*/
const Element& element() const
{ return *elemPtr_; }
/*!
* \brief Return the number of sub-control volumes of the current element.
*/
size_t numDof(unsigned timeIdx) const
{ return stencil(timeIdx).numDof(); }
/*!
* \brief Return the number of primary degrees of freedom of the current element.
*/
size_t numPrimaryDof(unsigned timeIdx) const
{ return stencil(timeIdx).numPrimaryDof(); }
/*!
* \brief Return the number of non-boundary faces which need to be
* considered for the flux apporixmation.
*/
size_t numInteriorFaces(unsigned timeIdx) const
{ return stencil(timeIdx).numInteriorFaces(); }
/*!
* \brief Return the number of boundary faces which need to be
* considered for the flux apporixmation.
*/
size_t numBoundaryFaces(unsigned timeIdx) const
{ return stencil(timeIdx).numBoundaryFaces(); }
/*!
* \brief Return the current finite element geometry.
*
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
const Stencil& stencil(unsigned) const
{ return stencil_; }
/*!
* \brief Return the position of a local entities in global coordinates
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
decltype(auto) pos(unsigned dofIdx, unsigned) const
{ return stencil_.subControlVolume(dofIdx).globalPos(); }
/*!
* \brief Return the global spatial index for a sub-control volume
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
unsigned globalSpaceIndex(unsigned dofIdx, unsigned timeIdx) const
{ return stencil(timeIdx).globalSpaceIndex(dofIdx); }
/*!
* \brief Return the element-local volume associated with a degree of freedom
*
* In the case of the vertex-centered finite volume method, this is different from
* the total volume because a finite volume usually spans multiple elements...
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
Scalar dofVolume(unsigned dofIdx, unsigned timeIdx) const
{ return stencil(timeIdx).subControlVolume(dofIdx).volume(); }
/*!
* \brief Return the total volume associated with a degree of freedom
*
* "Total" means the volume controlled by a degree of freedom disregarding the
* element. (For example in the vertex-centered finite volume method, a control
* volume typically encompasses parts of multiple elements.)
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
Scalar dofTotalVolume(unsigned dofIdx, unsigned timeIdx) const
{ return model().dofTotalVolume(globalSpaceIndex(dofIdx, timeIdx)); }
/*!
* \brief Returns whether the current element is on the domain's
* boundary.
*/
bool onBoundary() const
{ return element().hasBoundaryIntersections(); }
/*!
* \brief Return a reference to the intensive quantities of a
* sub-control volume at a given time.
*
* If the time step index is not given, return the volume
* variables for the current time.
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx) const
{
#ifndef NDEBUG
assert(dofIdx < numDof(timeIdx));
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
"for the most-recent substep (i.e. time index 0) are available!");
#endif
return dofVars_[dofIdx].intensiveQuantities[timeIdx];
}
/*!
* \brief Return the thermodynamic hint for a given local index.
*
* \sa Discretization::thermodynamicHint(int, int)
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const IntensiveQuantities *thermodynamicHint(unsigned dofIdx, unsigned timeIdx) const
{
assert(dofIdx < numDof(timeIdx));
return dofVars_[dofIdx].thermodynamicHint[timeIdx];
}
/*!
* \copydoc intensiveQuantities()
*/
IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx)
{
assert(dofIdx < numDof(timeIdx));
return dofVars_[dofIdx].intensiveQuantities[timeIdx];
}
/*!
* \brief Return the primary variables for a given local index.
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
const PrimaryVariables& primaryVars(unsigned dofIdx, unsigned timeIdx) const
{
assert(dofIdx < numDof(timeIdx));
return *dofVars_[dofIdx].priVars[timeIdx];
}
/*!
* \brief Returns true if no intensive quanties are stashed
*
* In most cases quantities are stashed only if a partial derivative is to be
* calculated via finite difference methods.
*/
bool haveStashedIntensiveQuantities() const
{ return stashedDofIdx_ != -1; }
/*!
* \brief Return the (local) index of the DOF for which the primary variables were
* stashed
*
* If none, then this returns -1.
*/
int stashedDofIdx() const
{ return stashedDofIdx_; }
/*!
* \brief Stash the intensive quantities for a degree of freedom on internal memory.
*
* \param dofIdx The local index of the degree of freedom in the current element.
*/
void stashIntensiveQuantities(unsigned dofIdx)
{
assert(dofIdx < numDof(/*timeIdx=*/0));
intensiveQuantitiesStashed_ = dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0];
priVarsStashed_ = *dofVars_[dofIdx].priVars[/*timeIdx=*/0];
stashedDofIdx_ = static_cast<int>(dofIdx);
}
/*!
* \brief Restores the intensive quantities for a degree of freedom from internal memory.
*
* \param dofIdx The local index of the degree of freedom in the current element.
*/
void restoreIntensiveQuantities(unsigned dofIdx)
{
dofVars_[dofIdx].priVars[/*timeIdx=*/0] = &priVarsStashed_;
dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0] = intensiveQuantitiesStashed_;
stashedDofIdx_ = -1;
}
/*!
* \brief Return a reference to the gradient calculation class of
* the chosen spatial discretization.
*/
const GradientCalculator& gradientCalculator() const
{ return gradientCalculator_; }
/*!
* \brief Return a reference to the extensive quantities of a
* sub-control volume face.
*
* \param fluxIdx The local index of the sub-control volume face for which the
* extensive quantities are requested
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const ExtensiveQuantities& extensiveQuantities(unsigned fluxIdx, unsigned) const
{ return extensiveQuantities_[fluxIdx]; }
/*!
* \brief Returns true iff the cache for the storage term ought to be used for this context.
*
* If it is used, intensive quantities can only be accessed for the most recent time
* index. (time index 0.)
*/
bool enableStorageCache() const
{ return enableStorageCache_; }
/*!
* \brief Specifies if the cache for the storage term ought to be used for this context.
*/
void setEnableStorageCache(bool yesno)
{ enableStorageCache_ = yesno; }
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
protected:
/*!
* \brief Update the first 'n' intensive quantities objects from the primary variables.
*
* This method considers the intensive quantities cache.
*/
void updateIntensiveQuantities_(unsigned timeIdx, size_t numDof)
{
// update the intensive quantities for the whole history
const SolutionVector& globalSol = model().solution(timeIdx);
// update the non-gradient quantities
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
unsigned globalIdx = globalSpaceIndex(dofIdx, timeIdx);
const PrimaryVariables& dofSol = globalSol[globalIdx];
dofVars_[dofIdx].priVars[timeIdx] = &dofSol;
dofVars_[dofIdx].thermodynamicHint[timeIdx] =
model().thermodynamicHint(globalIdx, timeIdx);
const auto *cachedIntQuants = model().cachedIntensiveQuantities(globalIdx, timeIdx);
if (cachedIntQuants) {
dofVars_[dofIdx].intensiveQuantities[timeIdx] = *cachedIntQuants;
}
else {
updateSingleIntQuants_(dofSol, dofIdx, timeIdx);
model().updateCachedIntensiveQuantities(dofVars_[dofIdx].intensiveQuantities[timeIdx],
globalIdx,
timeIdx);
}
}
}
void updateSingleIntQuants_(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
{
#ifndef NDEBUG
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
"for the most-recent substep (i.e. time index 0) are available!");
#endif
dofVars_[dofIdx].priVars[timeIdx] = &priVars;
dofVars_[dofIdx].intensiveQuantities[timeIdx].update(/*context=*/asImp_(), dofIdx, timeIdx);
}
IntensiveQuantities intensiveQuantitiesStashed_;
PrimaryVariables priVarsStashed_;
GradientCalculator gradientCalculator_;
std::vector<DofStore_, aligned_allocator<DofStore_, alignof(DofStore_)> > dofVars_;
std::vector<ExtensiveQuantities, aligned_allocator<ExtensiveQuantities, alignof(ExtensiveQuantities)> > extensiveQuantities_;
const Simulator *simulatorPtr_;
const Element *elemPtr_;
const GridView gridView_;
Stencil stencil_;
int stashedDofIdx_;
int focusDofIdx_;
bool enableStorageCache_;
};
} // namespace Opm
#endif