mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 19:33:00 -06:00
200 lines
7.2 KiB
C++
200 lines
7.2 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::RichardsIntensiveQuantities
|
|
*/
|
|
#ifndef EWOMS_RICHARDS_INTENSIVE_QUANTITIES_HH
|
|
#define EWOMS_RICHARDS_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include "richardsproperties.hh"
|
|
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup RichardsModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Intensive quantities required by the Richards model.
|
|
*/
|
|
template <class TypeTag>
|
|
class RichardsIntensiveQuantities
|
|
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
|
|
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
|
|
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum { pressureWIdx = Indices::pressureWIdx };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { liquidPhaseIdx = getPropValue<TypeTag, Properties::LiquidPhaseIndex>() };
|
|
enum { gasPhaseIdx = getPropValue<TypeTag, Properties::GasPhaseIndex>() };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using ScalarPhaseVector = Dune::FieldVector<Scalar, numPhases>;
|
|
using PhaseVector = Dune::FieldVector<Evaluation, numPhases>;
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
|
|
public:
|
|
//! The type returned by the fluidState() method
|
|
using FluidState = Opm::ImmiscibleFluidState<Evaluation, FluidSystem>;
|
|
|
|
RichardsIntensiveQuantities()
|
|
{}
|
|
|
|
RichardsIntensiveQuantities(const RichardsIntensiveQuantities& other) = default;
|
|
|
|
RichardsIntensiveQuantities& operator=(const RichardsIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \copydoc IntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, dofIdx, timeIdx);
|
|
|
|
const auto& T = elemCtx.problem().temperature(elemCtx, dofIdx, timeIdx);
|
|
fluidState_.setTemperature(T);
|
|
|
|
// material law parameters
|
|
const auto& problem = elemCtx.problem();
|
|
const typename MaterialLaw::Params& materialParams =
|
|
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
|
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
|
|
/////////
|
|
// calculate the pressures
|
|
/////////
|
|
|
|
// first, we have to find the minimum capillary pressure (i.e. Sw = 0)
|
|
fluidState_.setSaturation(liquidPhaseIdx, 1.0);
|
|
fluidState_.setSaturation(gasPhaseIdx, 0.0);
|
|
ScalarPhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
|
|
|
|
// non-wetting pressure can be larger than the
|
|
// reference pressure if the medium is fully
|
|
// saturated by the wetting phase
|
|
const Evaluation& pW = priVars.makeEvaluation(pressureWIdx, timeIdx);
|
|
Evaluation pN =
|
|
Toolbox::max(elemCtx.problem().referencePressure(elemCtx, dofIdx, /*timeIdx=*/0),
|
|
pW + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
|
|
|
|
/////////
|
|
// calculate the saturations
|
|
/////////
|
|
fluidState_.setPressure(liquidPhaseIdx, pW);
|
|
fluidState_.setPressure(gasPhaseIdx, pN);
|
|
|
|
PhaseVector sat;
|
|
MaterialLaw::saturations(sat, materialParams, fluidState_);
|
|
fluidState_.setSaturation(liquidPhaseIdx, sat[liquidPhaseIdx]);
|
|
fluidState_.setSaturation(gasPhaseIdx, sat[gasPhaseIdx]);
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
paramCache.updateAll(fluidState_);
|
|
|
|
// compute and set the wetting phase viscosity
|
|
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, liquidPhaseIdx);
|
|
fluidState_.setViscosity(liquidPhaseIdx, mu);
|
|
fluidState_.setViscosity(gasPhaseIdx, 1e-20);
|
|
|
|
// compute and set the wetting phase density
|
|
const Evaluation& rho = FluidSystem::density(fluidState_, paramCache, liquidPhaseIdx);
|
|
fluidState_.setDensity(liquidPhaseIdx, rho);
|
|
fluidState_.setDensity(gasPhaseIdx, 1e-20);
|
|
|
|
// relperms
|
|
MaterialLaw::relativePermeabilities(relativePermeability_, materialParams, fluidState_);
|
|
|
|
// mobilities
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
mobility_[phaseIdx] = relativePermeability_[phaseIdx]/fluidState_.viscosity(phaseIdx);
|
|
|
|
// porosity
|
|
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
|
|
|
|
// intrinsic permeability
|
|
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the quantities specific for the velocity model
|
|
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::fluidState
|
|
*/
|
|
const FluidState& fluidState() const
|
|
{ return fluidState_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::porosity
|
|
*/
|
|
const Evaluation& porosity() const
|
|
{ return porosity_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
|
|
*/
|
|
const DimMatrix& intrinsicPermeability() const
|
|
{ return intrinsicPerm_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
|
|
*/
|
|
const Evaluation& relativePermeability(unsigned phaseIdx) const
|
|
{ return relativePermeability_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::mobility
|
|
*/
|
|
const Evaluation& mobility(unsigned phaseIdx) const
|
|
{ return mobility_[phaseIdx]; }
|
|
|
|
private:
|
|
FluidState fluidState_;
|
|
DimMatrix intrinsicPerm_;
|
|
std::array<Evaluation,numPhases> relativePermeability_;
|
|
std::array<Evaluation,numPhases> mobility_;
|
|
Evaluation porosity_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|