opm-simulators/opm/simulators/wells/MultisegmentWellSegments.cpp
2024-04-17 11:12:40 +02:00

1027 lines
47 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellSegments.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/Schedule/MSW/AICD.hpp>
#include <opm/input/eclipse/Schedule/MSW/WellSegments.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/material/densead/EvaluationFormat.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/MSWellHelpers.hpp>
#include <opm/simulators/wells/SegmentState.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <fmt/format.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <functional>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace Opm
{
template<class FluidSystem, class Indices>
MultisegmentWellSegments<FluidSystem,Indices>::
MultisegmentWellSegments(const int numSegments,
WellInterfaceGeneric& well)
: perforations_(numSegments)
, perforation_depth_diffs_(well.numPerfs(), 0.0)
, inlets_(well.wellEcl().getSegments().size())
, depth_diffs_(numSegments, 0.0)
, densities_(numSegments, 0.0)
, mass_rates_(numSegments, 0.0)
, viscosities_(numSegments, 0.0)
, upwinding_segments_(numSegments, 0)
, phase_densities_(numSegments, std::vector<EvalWell>(well.numComponents(), 0.0)) // number of phase here?
, phase_fractions_(numSegments, std::vector<EvalWell>(well.numComponents(), 0.0)) // number of phase here?
, phase_viscosities_(numSegments, std::vector<EvalWell>(well.numComponents(), 0.0)) // number of phase here?
, well_(well)
{
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
// for other facilities needed but not available from parser, we need to process them here
// initialize the segment_perforations_ and update perforation_segment_depth_diffs_
const WellConnections& completion_set = well_.wellEcl().getConnections();
// index of the perforation within wells struct
// there might be some perforations not active, which causes the number of the perforations in
// well_ecl_ and wells struct different
// the current implementation is a temporary solution for now, it should be corrected from the parser
// side
int i_perf_wells = 0;
well.perfDepth().resize(well_.numPerfs(), 0.);
const auto& segment_set = well_.wellEcl().getSegments();
for (std::size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
if (segment_index == -1) {
OPM_THROW(std::logic_error,
fmt::format("COMPSEGS: Well {} has connection in cell {}, {}, {} "
"without associated segment.", well_.wellEcl().name(),
connection.getI() + 1, connection.getJ() + 1,
connection.getK() + 1));
}
perforations_[segment_index].push_back(i_perf_wells);
well.perfDepth()[i_perf_wells] = connection.depth();
const double segment_depth = segment_set[segment_index].depth();
perforation_depth_diffs_[i_perf_wells] = well_.perfDepth()[i_perf_wells] - segment_depth;
i_perf_wells++;
}
}
// initialize the segment_inlets_
for (const Segment& segment : segment_set) {
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
inlets_[outlet_segment_index].push_back(segment_index);
}
}
// calculating the depth difference between the segment and its oulet_segments
// for the top segment, we will make its zero unless we find other purpose to use this value
for (int seg = 1; seg < numSegments; ++seg) {
const double segment_depth = segment_set[seg].depth();
const int outlet_segment_number = segment_set[seg].outletSegment();
const Segment& outlet_segment = segment_set[segment_set.segmentNumberToIndex(outlet_segment_number)];
const double outlet_depth = outlet_segment.depth();
depth_diffs_[seg] = segment_depth - outlet_depth;
}
}
template<class FluidSystem, class Indices>
void MultisegmentWellSegments<FluidSystem,Indices>::
computeFluidProperties(const EvalWell& temperature,
const EvalWell& saltConcentration,
const PrimaryVariables& primary_variables,
int pvt_region_index,
DeferredLogger& deferred_logger)
{
std::vector<double> surf_dens(well_.numComponents());
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index);
}
for (std::size_t seg = 0; seg < perforations_.size(); ++seg) {
// the compostion of the components inside wellbore under surface condition
std::vector<EvalWell> mix_s(well_.numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
mix_s[comp_idx] = primary_variables.surfaceVolumeFraction(seg, comp_idx);
}
std::vector<EvalWell> b(well_.numComponents(), 0.0);
std::vector<EvalWell> visc(well_.numComponents(), 0.0);
std::vector<EvalWell>& phase_densities = phase_densities_[seg];
const EvalWell seg_pressure = primary_variables.getSegmentPressure(seg);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
EvalWell rsw(0.0);
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rsw, saltConcentration);
visc[waterCompIdx] =
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, rsw, saltConcentration);
// TODO: double check here
// TODO: should not we use phaseIndex here?
phase_densities[waterCompIdx] = b[waterCompIdx] * surf_dens[waterCompIdx];
}
EvalWell rv(0.0);
EvalWell rvw(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw);
visc[gasCompIdx] =
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv, rvw);
phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx]
+ rv * b[gasCompIdx] * surf_dens[oilCompIdx];
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx];
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
visc[oilCompIdx] =
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx]
+ rs * b[oilCompIdx] * surf_dens[gasCompIdx];
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx];
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
phase_viscosities_[seg] = visc;
std::vector<EvalWell> mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (d <= 0.0) {
const std::string str =
fmt::format("Problematic d value {} obtained for well {} "
"during segment density calculations with rs {}, "
"rv {} and pressure {}. "
"Continue as if no dissolution (rs = 0) and "
"vaporization (rv = 0) for this connection.",
d, well_.name(), rs, rv, seg_pressure);
deferred_logger.debug(str);
} else {
if (rs > 0.0) {
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv > 0.0) {
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
}
EvalWell volrat(0.0);
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
volrat += mix[comp_idx] / b[comp_idx];
}
viscosities_[seg] = 0.;
// calculate the average viscosity
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat;
// TODO: a little more work needs to be done to handle the negative fractions here
phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0;
viscosities_[seg] += visc[comp_idx] * phase_fractions_[seg][comp_idx];
}
EvalWell density(0.0);
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
density += surf_dens[comp_idx] * mix_s[comp_idx];
}
densities_[seg] = density / volrat;
// calculate the mass rates
mass_rates_[seg] = 0.;
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
const int upwind_seg = upwinding_segments_[seg];
const EvalWell rate = primary_variables.getSegmentRateUpwinding(seg,
upwind_seg,
comp_idx);
mass_rates_[seg] += rate * surf_dens[comp_idx];
}
}
}
template<class FluidSystem, class Indices>
void MultisegmentWellSegments<FluidSystem,Indices>::
updateUpwindingSegments(const PrimaryVariables& primary_variables)
{
for (std::size_t seg = 0; seg < perforations_.size(); ++seg) {
// special treatment is needed for segment 0
if (seg == 0) {
// we are not supposed to have injecting producers and producing injectors
assert(!(well_.isProducer() && primary_variables.eval(seg)[primary_variables.WQTotal] > 0.));
assert(!(well_.isInjector() && primary_variables.eval(seg)[primary_variables.WQTotal] < 0.));
upwinding_segments_[seg] = seg;
continue;
}
// for other normal segments
if (primary_variables.eval(seg)[primary_variables.WQTotal] <= 0.) {
upwinding_segments_[seg] = seg;
} else {
const auto& segment_set = well_.wellEcl().getSegments();
const int outlet_segment_index = segment_set.segmentNumberToIndex(segment_set[seg].outletSegment());
upwinding_segments_[seg] = outlet_segment_index;
}
}
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
getHydroPressureLoss(const int seg,
const int seg_density) const
{
return densities_[seg_density] * well_.gravity() * depth_diffs_[seg];
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::Scalar
MultisegmentWellSegments<FluidSystem,Indices>::
getPressureDiffSegPerf(const int seg,
const int perf) const
{
return well_.gravity() * densities_[seg].value() * perforation_depth_diffs_[perf];
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
getSurfaceVolume(const EvalWell& temperature,
const EvalWell& saltConcentration,
const PrimaryVariables& primary_variables,
const int pvt_region_index,
const int seg_idx) const
{
const EvalWell seg_pressure = primary_variables.getSegmentPressure(seg_idx);
std::vector<EvalWell> mix_s(well_.numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
mix_s[comp_idx] = primary_variables.surfaceVolumeFraction(seg_idx, comp_idx);
}
std::vector<EvalWell> b(well_.numComponents(), 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell rsw(0.0);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
rsw,
saltConcentration);
}
EvalWell rv(0.0);
EvalWell rvw(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index,
temperature,
seg_pressure);
if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table
rvmax = 0.0;
}
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
rv,
rvw);
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index,
temperature,
seg_pressure);
if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table
rsmax = 0.0;
}
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
// std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl;
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
rs);
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
} else { // no gas phase
// it is the same with zero mix_s[Gas]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
}
std::vector<EvalWell> mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (d <= 0.0 || d > 1.0) {
const std::string str =
fmt::format("Problematic d value {} obtained for well {} "
"during conversion to surface volume with rs {}, "
"rv {} and pressure {}. "
"Continue as if no dissolution (rs = 0) and "
"vaporization (rv = 0) for this connection.",
d, well_.name(), rs, rv, seg_pressure);
OpmLog::debug(str);
} else {
if (rs > 0.0) {
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv > 0.0) {
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
}
EvalWell vol_ratio(0.0);
for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) {
vol_ratio += mix[comp_idx] / b[comp_idx];
}
// We increase the segment volume with a factor 10 to stabilize the system.
const double volume = well_.wellEcl().getSegments()[seg_idx].volume();
return volume / vol_ratio;
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
getFrictionPressureLoss(const int seg,
const bool extra_reverse_flow_derivatives /*false*/) const
{
EvalWell mass_rate = mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = densities_[seg_upwind];
EvalWell visc = viscosities_[seg_upwind];
// In the reverse flow case, we don't have enough slots for all derivatives, e.g.,
// upwind pressure and flow. We amend this by a second function call optioin, where
// only these remaining derivatives are considered.
// For reference: the pressure equation assumes pressure/flow derivatives are given
// at segment node while fraction derivatives are given at upwind node.
if (seg != seg_upwind) {
if (!extra_reverse_flow_derivatives){
constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal;
constexpr int SPres = Indices::numEq + PrimaryVariables::SPres;
density.setDerivative(WQTotal, 0.0);
density.setDerivative(SPres, 0.0);
visc.setDerivative(WQTotal, 0.0);
visc.setDerivative(SPres, 0.0);
} else {
if (PrimaryVariables::has_water){
constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac;
density.setDerivative(WFrac, 0.0);
visc.setDerivative(WFrac, 0.0);
}
if (PrimaryVariables::has_gas){
constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac;
density.setDerivative(GFrac, 0.0);
visc.setDerivative(GFrac, 0.0);
}
mass_rate.clearDerivatives();
}
}
const auto& segment_set = well_.wellEcl().getSegments();
const int outlet_segment_index = segment_set.segmentNumberToIndex(segment_set[seg].outletSegment());
const double length = segment_set[seg].totalLength() - segment_set[outlet_segment_index].totalLength();
assert(length > 0.);
const double roughness = segment_set[seg].roughness();
const double area = segment_set[seg].crossArea();
const double diameter = segment_set[seg].internalDiameter();
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
pressureDropSpiralICD(const int seg,
const bool extra_reverse_flow_derivatives /*false*/) const
{
const auto& segment_set = well_.wellEcl().getSegments();
const SICD& sicd = segment_set[seg].spiralICD();
const int seg_upwind = upwinding_segments_[seg];
const std::vector<EvalWell>& phase_fractions = phase_fractions_[seg_upwind];
const std::vector<EvalWell>& phase_viscosities = phase_viscosities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
}
EvalWell density = densities_[seg_upwind];
EvalWell mass_rate = mass_rates_[seg];
// In the reverse flow case, we don't have enough slots for all derivatives, e.g.,
// upwind pressure and flow. We amend this by a second function call option, where
// only these remaining derivatives are considered.
// For reference: the pressure equation assumes pressure/flow derivatives are given
// at segment node while fraction derivatives are given at upwind node.
if (seg != seg_upwind) {
constexpr int nvar = FluidSystem::numPhases + 1;
std::vector<bool> zero_mask(nvar, false);
if (!extra_reverse_flow_derivatives){
zero_mask[PrimaryVariables::WQTotal] = true;
zero_mask[PrimaryVariables::SPres] = true;
} else {
if constexpr (PrimaryVariables::has_water){
zero_mask[PrimaryVariables::WFrac] = true;
}
if constexpr (PrimaryVariables::has_gas){
zero_mask[PrimaryVariables::GFrac] = true;
}
// mass_rate has no extra derivatives (they are organized as in equations)
mass_rate.clearDerivatives();
}
for (int ii = 0; ii < nvar; ++ii) {
if (zero_mask[ii]) {
water_fraction.setDerivative(Indices::numEq + ii, 0.0);
water_viscosity.setDerivative(Indices::numEq + ii, 0.0);
oil_fraction.setDerivative(Indices::numEq + ii, 0.0);
oil_viscosity.setDerivative(Indices::numEq + ii, 0.0);
gas_fraction.setDerivative(Indices::numEq + ii, 0.0);
gas_viscosity.setDerivative(Indices::numEq + ii, 0.0);
density.setDerivative(Indices::numEq + ii, 0.0);
}
}
}
const EvalWell liquid_fraction = water_fraction + oil_fraction;
// viscosity contribution from the liquid
const EvalWell liquid_viscosity_fraction = liquid_fraction < 1.e-30 ? oil_fraction * oil_viscosity + water_fraction * water_viscosity :
liquid_fraction * mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd);
const EvalWell mixture_viscosity = liquid_viscosity_fraction + gas_fraction * gas_viscosity;
const EvalWell reservoir_rate = mass_rate / density;
const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor();
const double viscosity_cali = sicd.viscosityCalibration();
using MathTool = MathToolbox<EvalWell>;
const double density_cali = sicd.densityCalibration();
// make sure we don't pass negative base to powers
const EvalWell temp_value1 = density > 0.0 ? MathTool::pow(density / density_cali, 0.75) : 0.0;
const EvalWell temp_value2 = mixture_viscosity > 0.0 ? MathTool::pow(mixture_viscosity / viscosity_cali, 0.25) : 0.0;
// formulation before 2016, base_strength is used
// const double base_strength = sicd.strength() / density_cali;
// formulation since 2016, strength is used instead
const double strength = sicd.strength();
const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0;
return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd;
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
pressureDropAutoICD(const int seg,
const UnitSystem& unit_system,
const bool extra_reverse_flow_derivatives /*false*/) const
{
const auto& segment_set = well_.wellEcl().getSegments();
const AutoICD& aicd = segment_set[seg].autoICD();
const int seg_upwind = upwinding_segments_[seg];
const std::vector<EvalWell>& phase_fractions = phase_fractions_[seg_upwind];
const std::vector<EvalWell>& phase_viscosities = phase_viscosities_[seg_upwind];
const std::vector<EvalWell>& phase_densities = phase_densities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
EvalWell water_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
water_density = phase_densities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
EvalWell oil_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
oil_density = phase_densities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
EvalWell gas_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
gas_density = phase_densities[gas_pos];
}
EvalWell density = densities_[seg_upwind];
EvalWell mass_rate = mass_rates_[seg];
// In the reverse flow case, we don't have enough slots for all derivatives, e.g.,
// upwind pressure and flow. We amend this by a second function call option, where
// only these remaining derivatives are considered.
// For reference: the pressure equation assumes pressure/flow derivatives are given
// at segment node while fraction derivatives are given at upwind node.
if (seg != seg_upwind) {
constexpr int nvar = FluidSystem::numPhases + 1;
std::vector<bool> zero_mask(nvar, false);
if (!extra_reverse_flow_derivatives){
zero_mask[PrimaryVariables::WQTotal] = true;
zero_mask[PrimaryVariables::SPres] = true;
} else {
if (PrimaryVariables::has_water){
zero_mask[PrimaryVariables::WFrac] = true;
}
if (PrimaryVariables::has_gas){
zero_mask[PrimaryVariables::GFrac] = true;
}
// mass_rate has no extra derivatives (they are organized as in equations)
mass_rate.clearDerivatives();
}
for (int ii = 0; ii < nvar; ++ii) {
if (zero_mask[ii]) {
water_fraction.setDerivative(Indices::numEq + ii, 0.0);
water_viscosity.setDerivative(Indices::numEq + ii, 0.0);
water_density.setDerivative(Indices::numEq + ii, 0.0);
oil_fraction.setDerivative(Indices::numEq + ii, 0.0);
oil_viscosity.setDerivative(Indices::numEq + ii, 0.0);
oil_density.setDerivative(Indices::numEq + ii, 0.0);
gas_fraction.setDerivative(Indices::numEq + ii, 0.0);
gas_viscosity.setDerivative(Indices::numEq + ii, 0.0);
gas_density.setDerivative(Indices::numEq + ii, 0.0);
density.setDerivative(Indices::numEq + ii, 0.0);
}
}
}
using MathTool = MathToolbox<EvalWell>;
// make sure we don't pass negative base to powers
auto safe_pow = [](const auto& a, const double b) {
return a > 0.0 ? MathTool::pow(a,b) : 0.0;
};
const EvalWell mixture_viscosity = safe_pow(water_fraction, aicd.waterViscExponent()) * water_viscosity
+ safe_pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity
+ safe_pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity;
const EvalWell mixture_density = safe_pow(water_fraction, aicd.waterDensityExponent()) * water_density
+ safe_pow(oil_fraction, aicd.oilDensityExponent()) * oil_density
+ safe_pow(gas_fraction, aicd.gasDensityExponent()) * gas_density;
const double rho_reference = aicd.densityCalibration();
const double visc_reference = aicd.viscosityCalibration();
const auto volume_rate_icd = mass_rate * aicd.scalingFactor() / mixture_density;
const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0;
// convert 1 unit volume rate
using M = UnitSystem::measure;
const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.);
// TODO: we did not consider the maximum allowed rate here
const auto result = sign / rho_reference * mixture_density * mixture_density
* safe_pow(visc_reference/mixture_viscosity, aicd.viscExponent())
* aicd.strength() * safe_pow( -sign * volume_rate_icd, aicd.flowRateExponent())
* std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ;
return result;
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
pressureDropValve(const int seg,
const SummaryState& summary_state,
const bool extra_reverse_flow_derivatives /*false*/) const
{
const Opm::WellSegments& segment_set = well_.wellEcl().getSegments();
const Valve& valve = segment_set[seg].valve();
EvalWell mass_rate = mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell visc = viscosities_[seg_upwind];
EvalWell density = densities_[seg_upwind];
// In the reverse flow case, we don't have enough slots for all derivatives, e.g.,
// upwind pressure and flow. We amend this by a second function call optioin, where
// only these remaining derivatives are considered.
// For reference: the pressure equation assumes pressure/flow derivatives are given
// at segment node while fraction derivatives are given at upwind node.
if (seg != seg_upwind) {
if (!extra_reverse_flow_derivatives){
constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal;
constexpr int SPres = Indices::numEq + PrimaryVariables::SPres;
density.setDerivative(WQTotal, 0.0);
density.setDerivative(SPres, 0.0);
visc.setDerivative(WQTotal, 0.0);
visc.setDerivative(SPres, 0.0);
} else {
if (PrimaryVariables::has_water){
constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac;
density.setDerivative(WFrac, 0.0);
visc.setDerivative(WFrac, 0.0);
}
if (PrimaryVariables::has_gas){
constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac;
density.setDerivative(GFrac, 0.0);
visc.setDerivative(GFrac, 0.0);
}
mass_rate.clearDerivatives();
}
}
const double additional_length = valve.pipeAdditionalLength();
const double roughness = valve.pipeRoughness();
const double diameter = valve.pipeDiameter();
const double area = valve.pipeCrossArea();
const EvalWell friction_pressure_loss =
mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc);
const ValveUDAEval uda_eval {summary_state, this->well_.name(), static_cast<std::size_t>(segment_set[seg].segmentNumber())};
const double area_con = valve.conCrossArea(uda_eval);
const double cv = valve.conFlowCoefficient();
const EvalWell constriction_pressure_loss =
mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv);
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
return sign * (friction_pressure_loss + constriction_pressure_loss);
}
template<class FluidSystem, class Indices>
typename MultisegmentWellSegments<FluidSystem,Indices>::EvalWell
MultisegmentWellSegments<FluidSystem,Indices>::
accelerationPressureLossContribution(const int seg,
const double area,
const bool extra_reverse_flow_derivatives /*false*/) const
{
// Compute the *signed* velocity head for given segment (sign is positive for flow towards surface, i.e., negative rate)
// Optionally return derivatives for reversed flow case
EvalWell mass_rate = mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = densities_[seg_upwind];
if (seg != seg_upwind) {
if (!extra_reverse_flow_derivatives){
constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal;
constexpr int SPres = Indices::numEq + PrimaryVariables::SPres;
density.setDerivative(WQTotal, 0.0);
density.setDerivative(SPres, 0.0);
} else {
if (PrimaryVariables::has_water){
constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac;
density.setDerivative(WFrac, 0.0);
}
if (PrimaryVariables::has_gas){
constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac;
density.setDerivative(GFrac, 0.0);
}
mass_rate.clearDerivatives();
}
}
const double sign = mass_rate > 0 ? -1.0 : 1.0;
return sign*mswellhelpers::velocityHead(area, mass_rate, density);
}
template <class FluidSystem, class Indices>
void
MultisegmentWellSegments<FluidSystem,Indices>::
copyPhaseDensities(const PhaseUsage& pu, SegmentState<Scalar>& segSol) const
{
auto* rho = segSol.phase_density.data();
const auto phaseMap = std::vector {
std::pair { BlackoilPhases::Liquid, FluidSystem::oilPhaseIdx },
std::pair { BlackoilPhases::Vapour, FluidSystem::gasPhaseIdx },
std::pair { BlackoilPhases::Aqua , FluidSystem::waterPhaseIdx },
};
// Densities stored in 'rho' as
// [{ p0, p1, ..., (np - 1), mixture, mixture_with_exponents },
// { p0, p1, ..., (np - 1), mixture, mixture_with_exponents },
// ...
// { p0, p1, ..., (np - 1), mixture, mixture_with_exponents }]
// Stride is np + 2.
for (const auto& [boPhase, fsPhaseIdx] : phaseMap) {
if (pu.phase_used[boPhase]) {
this->copyPhaseDensities(fsPhaseIdx, pu.num_phases + 2,
rho + pu.phase_pos[boPhase]);
}
}
// Mixture densities.
for (auto seg = 0*this->densities_.size(); seg < this->densities_.size(); ++seg) {
const auto mixOffset = seg*(pu.num_phases + 2) + pu.num_phases;
rho[mixOffset + 0] = this->mixtureDensity(seg);
rho[mixOffset + 1] = this->mixtureDensityWithExponents(seg);
}
}
template <class FluidSystem, class Indices>
void
MultisegmentWellSegments<FluidSystem,Indices>::
copyPhaseDensities(const unsigned phaseIdx,
const std::size_t stride,
double* dens) const
{
const auto compIdx = Indices::canonicalToActiveComponentIndex
(FluidSystem::solventComponentIndex(phaseIdx));
for (const auto& phase_density : this->phase_densities_) {
*dens = phase_density[compIdx].value();
dens += stride;
}
}
template <class FluidSystem, class Indices>
double
MultisegmentWellSegments<FluidSystem,Indices>::
mixtureDensity(const int seg) const
{
auto mixDens = 0.0;
const auto& rho = this->phase_densities_[seg];
const auto& q = this->phase_fractions_[seg];
for (const auto& phIdx : {
FluidSystem::oilPhaseIdx,
FluidSystem::gasPhaseIdx,
FluidSystem::waterPhaseIdx
})
{
if (! FluidSystem::phaseIsActive(phIdx)) {
continue;
}
const auto compIdx = Indices::
canonicalToActiveComponentIndex(phIdx);
mixDens += q[compIdx].value() * rho[compIdx].value();
}
return mixDens;
}
template <class FluidSystem, class Indices>
double
MultisegmentWellSegments<FluidSystem,Indices>::
mixtureDensityWithExponents(const int seg) const
{
if (const auto& segment = this->well_.wellEcl().getSegments()[seg];
segment.isAICD())
{
return this->mixtureDensityWithExponents(segment.autoICD(), seg);
}
// No other segment type includes exponents of flowing fractions when
// calculating the mixture/emulsion density.
return this->mixtureDensity(seg);
}
template <class FluidSystem, class Indices>
double
MultisegmentWellSegments<FluidSystem,Indices>::
mixtureDensityWithExponents(const AutoICD& aicd, const int seg) const
{
auto mixDens = 0.0;
const auto& rho = this->phase_densities_[seg];
const auto& q = this->phase_fractions_[seg];
constexpr auto densityExponents = std::array {
std::pair { FluidSystem::oilPhaseIdx , &AutoICD::oilDensityExponent },
std::pair { FluidSystem::gasPhaseIdx , &AutoICD::gasDensityExponent },
std::pair { FluidSystem::waterPhaseIdx, &AutoICD::waterDensityExponent },
};
for (const auto& [fsPhaseIdx, densityExponent] : densityExponents) {
if (FluidSystem::phaseIsActive(fsPhaseIdx)) {
const auto compIdx = Indices::
canonicalToActiveComponentIndex(fsPhaseIdx);
// exp = (aicd.*densityExponent)() in native syntax.
const auto exp = std::invoke(densityExponent, aicd);
mixDens += std::pow(q[compIdx].value(), exp) * rho[compIdx].value();
}
}
return mixDens;
}
#define INSTANCE(...) \
template class MultisegmentWellSegments<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<1u,0u,0u,0u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>)
} // namespace Opm