opm-simulators/ebos/eclwellmanager.hh
2021-01-11 17:42:30 +01:00

818 lines
32 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Opm::EclWellManager
*/
#ifndef EWOMS_ECL_WELL_MANAGER_HH
#define EWOMS_ECL_WELL_MANAGER_HH
#include "eclpeacemanwell.hh"
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellConnections.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/TimeMap.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/output/data/Groups.hpp>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/parallel/threadedentityiterator.hh>
#include <dune/grid/common/gridenums.hh>
#include <map>
#include <string>
#include <vector>
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief A class which handles well controls as specified by an
* Eclipse deck
*/
template <class TypeTag>
class EclWellManager
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
typedef typename GridView::template Codim<0>::Entity Element;
typedef Opm::EclPeacemanWell<TypeTag> Well;
typedef std::map<int, std::pair<const Opm::Connection*, std::shared_ptr<Well> > > WellConnectionsMap;
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
public:
EclWellManager(Simulator& simulator)
: simulator_(simulator)
{ }
/*!
* \brief This sets up the basic properties of all wells.
*
* I.e., well positions, names etc...
*/
void init()
{
const Opm::Schedule& deckSchedule = simulator_.vanguard().schedule();
const auto& summaryState = simulator_.vanguard().summaryState();
// create the wells which intersect with the current process' grid
for (size_t deckWellIdx = 0; deckWellIdx < deckSchedule.numWells(); ++deckWellIdx)
{
const Opm::Well deckWell = deckSchedule.getWellsatEnd()[deckWellIdx];
const std::string& wellName = deckWell.name();
Scalar wellTemperature = 273.15 + 15.56; // [K]
if (deckWell.isInjector())
wellTemperature = deckWell.injectionControls(summaryState).temperature;
// set the name of the well but not much else. (i.e., if it is not completed,
// the well primarily serves as a placeholder.) The big rest of the well is
// specified by the updateWellCompletions_() method
auto well = std::make_shared<Well>(simulator_);
well->setName(wellName);
well->setWellStatus(Well::Shut);
well->setTemperature(wellTemperature);
wells_.push_back(well);
wellNameToIndex_[well->name()] = wells_.size() - 1;
}
}
/*!
* \brief This should be called the problem before each simulation
* episode to adapt the well controls.
*/
void beginEpisode(bool wasRestarted=false)
{
const Opm::EclipseState& eclState = simulator_.vanguard().eclState();
const Opm::Schedule& deckSchedule = simulator_.vanguard().schedule();
const auto& summaryState = simulator_.vanguard().summaryState();
unsigned episodeIdx = simulator_.episodeIndex();
WellConnectionsMap wellCompMap;
computeWellConnectionsMap_(episodeIdx, wellCompMap);
if (wasRestarted || wellTopologyChanged_(eclState, deckSchedule, episodeIdx))
updateWellTopology_(episodeIdx, wellCompMap, gridDofIsPenetrated_);
// set those parameters of the wells which do not change the topology of the
// linearized system of equations
updateWellParameters_(episodeIdx, wellCompMap);
const std::vector<Opm::Well>& deckWells = deckSchedule.getWells(episodeIdx);
// set the injection data for the respective wells.
for (const auto& deckWell : deckWells) {
if (!hasWell(deckWell.name()))
continue;
auto well = this->well(deckWell.name());
if (deckWell.isInjector( ))
well->setTemperature(deckWell.injectionControls(summaryState).temperature);
auto deckWellStatus = deckWell.getStatus( );
switch (deckWellStatus) {
case Opm::Well::Status::AUTO:
// TODO: for now, auto means open...
case Opm::Well::Status::OPEN:
well->setWellStatus(Well::Open);
break;
case Opm::Well::Status::STOP:
well->setWellStatus(Well::Closed);
break;
case Opm::Well::Status::SHUT:
well->setWellStatus(Well::Shut);
break;
}
// make sure that the well is either an injector or a
// producer for the current episode. (it is not allowed to
// be neither or to be both...)
assert((deckWell.isInjector( )?1:0) +
(deckWell.isProducer( )?1:0) == 1);
if (deckWell.isInjector( )) {
well->setWellType(Well::Injector);
const auto controls = deckWell.injectionControls(summaryState);
switch (controls.injector_type) {
case Opm::InjectorType::WATER:
well->setInjectedPhaseIndex(FluidSystem::waterPhaseIdx);
break;
case Opm::InjectorType::GAS:
well->setInjectedPhaseIndex(FluidSystem::gasPhaseIdx);
break;
case Opm::InjectorType::OIL:
well->setInjectedPhaseIndex(FluidSystem::oilPhaseIdx);
break;
case Opm::InjectorType::MULTI:
throw std::runtime_error("Not implemented: Multi-phase injector wells");
}
switch (controls.cmode) {
case Opm::Well::InjectorCMode::RATE:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
break;
case Opm::Well::InjectorCMode::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
break;
case Opm::Well::InjectorCMode::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::Well::InjectorCMode::THP:
well->setControlMode(Well::ControlMode::TubingHeadPressure);
break;
case Opm::Well::InjectorCMode::GRUP:
throw std::runtime_error("Not implemented: Well groups");
case Opm::Well::InjectorCMode::CMODE_UNDEFINED:
std::cout << "Warning: Control mode of injection well " << well->name()
<< " is undefined. Assuming well to be shut.\n";
well->setWellStatus(Well::WellStatus::Shut);
continue;
}
switch (controls.injector_type) {
case Opm::InjectorType::WATER:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
break;
case Opm::InjectorType::OIL:
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
break;
case Opm::InjectorType::GAS:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
break;
case Opm::InjectorType::MULTI:
throw std::runtime_error("Not implemented: Multi-phase injection wells");
}
well->setMaximumSurfaceRate(controls.surface_rate);
well->setMaximumReservoirRate(controls.reservoir_rate);
well->setTargetBottomHolePressure(controls.bhp_limit);
// TODO
well->setTargetTubingHeadPressure(1e30);
//well->setTargetTubingHeadPressure(controls.thp_limit);
}
if (deckWell.isProducer( )) {
well->setWellType(Well::Producer);
const auto controls = deckWell.productionControls(summaryState);
switch (controls.cmode) {
case Opm::Well::ProducerCMode::ORAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
well->setMaximumSurfaceRate(controls.oil_rate);
break;
case Opm::Well::ProducerCMode::GRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
well->setMaximumSurfaceRate(controls.gas_rate);
break;
case Opm::Well::ProducerCMode::WRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(controls.water_rate);
break;
case Opm::Well::ProducerCMode::LRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(controls.liquid_rate);
break;
case Opm::Well::ProducerCMode::CRAT:
throw std::runtime_error("Not implemented: Linearly combined rates");
case Opm::Well::ProducerCMode::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/1.0, /*water=*/1.0);
well->setMaximumSurfaceRate(controls.resv_rate);
break;
case Opm::Well::ProducerCMode::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::Well::ProducerCMode::THP:
well->setControlMode(Well::ControlMode::TubingHeadPressure);
break;
case Opm::Well::ProducerCMode::GRUP:
throw std::runtime_error("Not implemented: Well groups");
case Opm::Well::ProducerCMode::NONE:
// fall-through
case Opm::Well::ProducerCMode::CMODE_UNDEFINED:
std::cout << "Warning: Control mode of production well " << well->name()
<< " is undefined. Assuming well to be shut.";
well->setWellStatus(Well::WellStatus::Shut);
continue;
}
well->setTargetBottomHolePressure(controls.bhp_limit);
// TODO
well->setTargetTubingHeadPressure(-1e30);
//well->setTargetTubingHeadPressure(controls.thp_limit);
}
}
}
/*!
* \brief Return the number of wells considered by the EclWellManager.
*/
unsigned numWells() const
{ return wells_.size(); }
/*!
* \brief Return if a given well name is known to the wells manager
*/
bool hasWell(const std::string& wellName) const
{
return wellNameToIndex_.find( wellName ) != wellNameToIndex_.end();
}
/*!
* \brief Returns true iff a given degree of freedom is currently penetrated by any well.
*/
bool gridDofIsPenetrated(unsigned globalDofIdx) const
{ return gridDofIsPenetrated_[globalDofIdx]; }
/*!
* \brief Given a well name, return the corresponding index.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
unsigned wellIndex(const std::string& wellName) const
{
assert( hasWell( wellName ) );
const auto& it = wellNameToIndex_.find(wellName);
if (it == wellNameToIndex_.end())
throw std::runtime_error("No well called '"+wellName+"'found");
return it->second;
}
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<const Well> well(const std::string& wellName) const
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<Well> well(const std::string& wellName)
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<const Well> well(size_t wellIdx) const
{ return wells_[wellIdx]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<Well> well(size_t wellIdx)
{ return wells_[wellIdx]; }
/*!
* \brief Informs the well manager that a time step has just begun.
*/
void beginTimeStep()
{
// iterate over all wells and notify them individually
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginTimeStep();
}
/*!
* \brief Informs the well that an iteration has just begun.
*
* In this method, the well calculates the bottom hole and tubing head pressures, the
* actual unconstraint production and injection rates, etc.
*/
void beginIteration()
{
// call the preprocessing routines
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationPreProcess();
// call the accumulation routines
ElementContext elemCtx(simulator_);
const auto gridView = simulator_.vanguard().gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationAccumulate(elemCtx, /*timeIdx=*/0);
}
// call the postprocessing routines
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationPostProcess();
}
/*!
* \brief Informs the well manager that an iteration has just been finished.
*/
void endIteration()
{
// iterate over all wells and notify them individually
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->endIteration();
}
/*!
* \brief Informs the well manager that a time step has just been finished.
*/
void endTimeStep()
{
Scalar dt = simulator_.timeStepSize();
// iterate over all wells and notify them individually. also, update the
// production/injection totals for the active wells.
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
auto well = wells_[wellIdx];
well->endTimeStep();
// update the surface volumes of the produced/injected fluids
std::array<Scalar, numPhases>* injectedVolume;
if (wellTotalInjectedVolume_.count(well->name()) == 0) {
injectedVolume = &wellTotalInjectedVolume_[well->name()];
std::fill(injectedVolume->begin(), injectedVolume->end(), 0.0);
}
else
injectedVolume = &wellTotalInjectedVolume_[well->name()];
std::array<Scalar, numPhases>* producedVolume;
if (wellTotalProducedVolume_.count(well->name()) == 0) {
producedVolume = &wellTotalProducedVolume_[well->name()];
std::fill(producedVolume->begin(), producedVolume->end(), 0.0);
}
else
producedVolume = &wellTotalProducedVolume_[well->name()];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// this assumes that the implicit Euler method is used for time
// integration. TODO: Once the time discretization becomes pluggable,
// this integration needs to be done by the time discretization code!
Scalar vol = dt * well->surfaceRate(phaseIdx);
if (vol < 0)
(*producedVolume)[phaseIdx] += -vol;
else
(*injectedVolume)[phaseIdx] += vol;
}
}
}
/*!
* \brief Informs the well manager that a simulation episode has just been finished.
*/
void endEpisode()
{ }
/*!
* \brief Returns the surface volume of a fluid phase produced by a well.
*/
Scalar totalProducedVolume(const std::string& wellName, unsigned phaseIdx) const
{
if (wellTotalProducedVolume_.count(wellName) == 0)
return 0.0; // well not yet seen
return wellTotalProducedVolume_.at(wellName)[phaseIdx];
}
/*!
* \brief Returns the surface volume of a fluid phase injected by a well.
*/
Scalar totalInjectedVolume(const std::string& wellName, unsigned phaseIdx) const
{
if (wellTotalInjectedVolume_.count(wellName) == 0)
return 0.0; // well not yet seen
return wellTotalInjectedVolume_.at(wellName)[phaseIdx];
}
/*!
* \brief Computes the source term due to wells for a degree of
* freedom.
*/
template <class Context>
void computeTotalRatesForDof(EvalEqVector& q,
const Context& context,
unsigned dofIdx,
unsigned timeIdx) const
{
q = 0.0;
if (!gridDofIsPenetrated(context.globalSpaceIndex(dofIdx, timeIdx)))
return;
RateVector wellRate;
// iterate over all wells and add up their individual rates
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
wellRate = 0.0;
wells_[wellIdx]->computeTotalRatesForDof(wellRate, context, dofIdx, timeIdx);
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
q[eqIdx] += wellRate[eqIdx];
}
}
Opm::data::Wells wellData() const
{
Opm::data::Wells wellDat;
using rt = Opm::data::Rates::opt;
for (unsigned wellIdx = 0; wellIdx < numWells(); ++wellIdx) {
const auto& ebosWell = well(wellIdx);
auto& wellOut = wellDat[ebosWell->name()];
wellOut.bhp = ebosWell->bottomHolePressure();
wellOut.thp = ebosWell->tubingHeadPressure();
wellOut.temperature = 0;
wellOut.rates.set( rt::wat, ebosWell->surfaceRate(waterPhaseIdx) );
wellOut.rates.set( rt::oil, ebosWell->surfaceRate(oilPhaseIdx) );
wellOut.rates.set( rt::gas, ebosWell->surfaceRate(gasPhaseIdx) );
const int numConnections = ebosWell->numConnections();
wellOut.connections.resize(numConnections);
for( int i = 0; i < numConnections; ++i ) {
auto& connection = wellOut.connections[ i ];
connection.index = 0;
connection.pressure = 0.0;
connection.reservoir_rate = 0.0;
connection.rates.set( rt::wat, 0.0 );
connection.rates.set( rt::oil, 0.0 );
connection.rates.set( rt::gas, 0.0 );
}
}
return wellDat;
}
Opm::data::GroupAndNetworkValues
groupAndNetworkData(const int /* reportStepIdx */,
const Opm::Schedule& /* sched */) const
{
return {};
}
/*!
* \brief This method writes the complete state of all wells
* to the hard disk.
*/
template <class Restarter>
void serialize(Restarter& res OPM_UNUSED)
{
/* do nothing: Everything which we need here is provided by the deck->.. */
}
/*!
* \brief This method restores the complete state of the all wells
* from disk.
*
* It is the inverse of the serialize() method.
*/
template <class Restarter>
void deserialize(Restarter& res OPM_UNUSED)
{
// initialize the wells for the current episode
beginEpisode(/*wasRestarted=*/true);
}
/*!
* \brief Returns true if something in a well changed compared to the previous report
* step.
*
* "Something" can either be the well topology (i.e., which grid blocks are contained
* in which well) or it can be a well parameter like the bottom hole pressure...
*/
bool wellsChanged(const Opm::EclipseState& eclState,
const Opm::Schedule& schedule,
unsigned reportStepIdx) const
{
if (wellTopologyChanged_(eclState, reportStepIdx))
return true;
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
// for the "until the universe dies" episode, the wells don't change
return false;
const Opm::Events& events = schedule[reportStepIdx].events();
return events.hasEvent(Opm::ScheduleEvents::PRODUCTION_UPDATE |
Opm::ScheduleEvents::INJECTION_UPDATE |
Opm::ScheduleEvents::WELL_STATUS_CHANGE );
}
void initFromRestartFile(const RestartValue& restartValues OPM_UNUSED){
// not implemented
}
protected:
bool wellTopologyChanged_(const Opm::EclipseState& eclState OPM_UNUSED,
const Opm::Schedule& schedule,
unsigned reportStepIdx) const
{
if (reportStepIdx == 0) {
// the well topology has always been changed relative to before the
// simulation is started...
return true;
}
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
// for the "until the universe dies" episode, the wells don't change
return false;
const Opm::Events& events = schedule[reportStepIdx].events();
return events.hasEvent(Opm::ScheduleEvents::NEW_WELL |
Opm::ScheduleEvents::COMPLETION_CHANGE);
}
void updateWellTopology_(unsigned reportStepIdx OPM_UNUSED,
const WellConnectionsMap& wellConnections,
std::vector<bool>& gridDofIsPenetrated) const
{
auto& model = simulator_.model();
const auto& vanguard = simulator_.vanguard();
// first, remove all wells from the reservoir
model.clearAuxiliaryModules();
auto wellIt = wells_.begin();
const auto& wellEndIt = wells_.end();
for (; wellIt != wellEndIt; ++wellIt) {
(*wellIt)->clear();
(*wellIt)->beginSpec();
}
//////
// tell the active wells which DOFs they contain
const auto gridView = simulator_.vanguard().gridView();
gridDofIsPenetrated.resize(model.numGridDof());
std::fill(gridDofIsPenetrated.begin(), gridDofIsPenetrated.end(), false);
ElementContext elemCtx(simulator_);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto elemEndIt = gridView.template end</*codim=*/0>();
std::set<std::shared_ptr<Well> > wells;
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // non-local entities need to be skipped
elemCtx.updateStencil(elem);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
if (wellConnections.count(cartesianDofIdx) == 0)
// the current DOF is not contained in any well, so we must skip
// it...
continue;
gridDofIsPenetrated[globalDofIdx] = true;
auto eclWell = wellConnections.at(cartesianDofIdx).second;
eclWell->addDof(elemCtx, dofIdx);
wells.insert(eclWell);
}
//////
}
// register all wells at the model as auxiliary equations
wellIt = wells_.begin();
for (; wellIt != wellEndIt; ++wellIt) {
(*wellIt)->endSpec();
model.addAuxiliaryModule(wellIt->get());
}
}
void computeWellConnectionsMap_(unsigned reportStepIdx OPM_UNUSED, WellConnectionsMap& cartesianIdxToConnectionMap)
{
const auto& deckSchedule = simulator_.vanguard().schedule();
#ifndef NDEBUG
const auto& eclState = simulator_.vanguard().eclState();
const auto& eclGrid = eclState.getInputGrid();
assert( int(eclGrid.getNX()) == simulator_.vanguard().cartesianDimensions()[ 0 ] );
assert( int(eclGrid.getNY()) == simulator_.vanguard().cartesianDimensions()[ 1 ] );
assert( int(eclGrid.getNZ()) == simulator_.vanguard().cartesianDimensions()[ 2 ] );
#endif
// compute the mapping from logically Cartesian indices to the well the
// respective connection.
const auto deckWells = deckSchedule.getWells(reportStepIdx);
for (const auto& deckWell : deckWells) {
const std::string& wellName = deckWell.name();
if (!hasWell(wellName))
{
#ifndef NDEBUG
if( simulator_.vanguard().grid().comm().size() == 1 )
{
std::cout << "Well '" << wellName << "' suddenly appears in the connection "
<< "for the report step, but has not been previously specified. "
<< "Ignoring.\n";
}
#endif
continue;
}
std::array<int, 3> cartesianCoordinate;
// set the well parameters defined by the current set of connections
const auto& connectionSet = deckWell.getConnections();
for (size_t connIdx = 0; connIdx < connectionSet.size(); connIdx ++) {
const auto& connection = connectionSet.get(connIdx);
cartesianCoordinate[ 0 ] = connection.getI();
cartesianCoordinate[ 1 ] = connection.getJ();
cartesianCoordinate[ 2 ] = connection.getK();
unsigned cartIdx = simulator_.vanguard().cartesianIndex( cartesianCoordinate );
// in this code we only support each cell to be part of at most a single
// well. TODO (?) change this?
assert(cartesianIdxToConnectionMap.count(cartIdx) == 0);
auto eclWell = wells_[wellIndex(wellName)];
cartesianIdxToConnectionMap[cartIdx] = std::make_pair(&connection, eclWell);
}
}
}
void updateWellParameters_(unsigned reportStepIdx, const WellConnectionsMap& wellConnections)
{
const auto& deckSchedule = simulator_.vanguard().schedule();
const auto deckWells = deckSchedule.getWells(reportStepIdx);
// set the reference depth for all wells
for (const auto& deckWell : deckWells) {
const std::string& wellName = deckWell.name();
if( hasWell( wellName ) )
{
wells_[wellIndex(wellName)]->clear();
wells_[wellIndex(wellName)]->setReferenceDepth(deckWell.getRefDepth());
}
}
// associate the well connections with grid cells and register them in the
// Peaceman well object
const auto& vanguard = simulator_.vanguard();
const GridView gridView = vanguard.gridView();
ElementContext elemCtx(simulator_);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // non-local entities need to be skipped
elemCtx.updateStencil(elem);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx)
{
assert( elemCtx.numPrimaryDof(/*timeIdx=*/0) == 1 );
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
if (wellConnections.count(cartesianDofIdx) == 0)
// the current DOF is not contained in any well, so we must skip
// it...
continue;
const auto& connInfo = wellConnections.at(cartesianDofIdx);
const Opm::Connection* connection = connInfo.first;
std::shared_ptr<Well> eclWell = connInfo.second;
eclWell->addDof(elemCtx, dofIdx);
eclWell->setConnectionTransmissibilityFactor(elemCtx, dofIdx, connection->CF());
eclWell->setRadius(elemCtx, dofIdx, connection->rw());
//eclWell->setEffectivePermeability(elemCtx, dofIdx, connection->Kh());
}
}
}
Simulator& simulator_;
std::vector<std::shared_ptr<Well> > wells_;
std::vector<bool> gridDofIsPenetrated_;
std::map<std::string, int> wellNameToIndex_;
std::map<std::string, std::array<Scalar, numPhases> > wellTotalInjectedVolume_;
std::map<std::string, std::array<Scalar, numPhases> > wellTotalProducedVolume_;
};
} // namespace Opm
#endif