opm-simulators/opm/simulators/wells/BlackoilWellModel_impl.hpp

3037 lines
117 KiB
C++

/*
Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics.
Copyright 2016 - 2018 Equinor ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 Norce AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/parser/eclipse/Units/UnitSystem.hpp>
#include <algorithm>
#include <utility>
#include <fmt/format.h>
namespace Opm {
template<typename TypeTag>
BlackoilWellModel<TypeTag>::
BlackoilWellModel(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
{
terminal_output_ = false;
if (ebosSimulator.gridView().comm().rank() == 0)
terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
// Create the guide rate container.
guideRate_.reset(new GuideRate (ebosSimulator_.vanguard().schedule()));
local_num_cells_ = ebosSimulator_.gridView().size(0);
// Number of cells the global grid view
global_num_cells_ = ebosSimulator_.vanguard().globalNumCells();
// Set up cartesian mapping.
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& cartDims = Opm::UgGridHelpers::cartDims(grid);
setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid),
cartDims[0]*cartDims[1]*cartDims[2]);
auto& parallel_wells = ebosSimulator.vanguard().parallelWells();
parallel_well_info_.assign(parallel_wells.begin(), parallel_wells.end());
const auto& pwell_info = parallel_well_info_;
std::size_t numProcs = ebosSimulator.gridView().comm().size();
is_shut_or_defunct_ = [&pwell_info, numProcs](const Well& well) {
if (well.getStatus() == Well::Status::SHUT)
return true;
if (numProcs == 1u)
return false;
std::pair<std::string, bool> value{well.name(), true}; // false indicate not active!
auto candidate = std::lower_bound(pwell_info.begin(),
pwell_info.end(),
value);
return candidate == pwell_info.end() || *candidate != value;
};
alternative_well_rate_init_ = EWOMS_GET_PARAM(TypeTag, bool, AlternativeWellRateInit);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
init()
{
const Opm::EclipseState& eclState = ebosSimulator_.vanguard().eclState();
extractLegacyCellPvtRegionIndex_();
extractLegacyDepth_();
phase_usage_ = phaseUsageFromDeck(eclState);
gravity_ = ebosSimulator_.problem().gravity()[2];
initial_step_ = true;
// add the eWoms auxiliary module for the wells to the list
ebosSimulator_.model().addAuxiliaryModule(this);
is_cell_perforated_.resize(local_num_cells_, false);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addNeighbors(std::vector<NeighborSet>& neighbors) const
{
if (!param_.matrix_add_well_contributions_) {
return;
}
// Create cartesian to compressed mapping
const auto& schedule_wells = schedule().getWellsatEnd();
// initialize the additional cell connections introduced by wells.
for (const auto& well : schedule_wells)
{
std::vector<int> wellCells;
// All possible connections of the well
const auto& connectionSet = well.getConnections();
wellCells.reserve(connectionSet.size());
for ( size_t c=0; c < connectionSet.size(); c++ )
{
const auto& connection = connectionSet.get(c);
int compressed_idx = cartesian_to_compressed_
.at(connection.global_index());
if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells.
wellCells.push_back(compressed_idx);
}
}
for (int cellIdx : wellCells) {
neighbors[cellIdx].insert(wellCells.begin(),
wellCells.end());
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res)
{
if (!localWellsActive())
return;
if (!param_.matrix_add_well_contributions_) {
// if the well contributions are not supposed to be included explicitly in
// the matrix, we only apply the vector part of the Schur complement here.
for (const auto& well: well_container_) {
// r = r - duneC_^T * invDuneD_ * resWell_
well->apply(res);
}
return;
}
for (const auto& well: well_container_) {
well->addWellContributions(jacobian);
// applying the well residual to reservoir residuals
// r = r - duneC_^T * invDuneD_ * resWell_
well->apply(res);
}
}
/// Return true if any well has a THP constraint.
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
hasTHPConstraints() const
{
int local_result = false;
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
for (const auto& well : well_container_) {
if (well->wellHasTHPConstraints(summaryState)) {
local_result=true;
}
}
return grid().comm().max(local_result);
}
/// Return true if the well was found and shut.
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
forceShutWellByNameIfPredictionMode(const std::string& wellname,
const double simulation_time)
{
// Only add the well to the closed list on the
// process that owns it.
int well_was_shut = 0;
for (const auto& well : well_container_) {
if (well->name() == wellname && !well->wellIsStopped()) {
if (well->underPredictionMode()) {
wellTestState_.closeWell(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time);
well_was_shut = 1;
}
break;
}
}
// Communicate across processes if a well was shut.
well_was_shut = ebosSimulator_.vanguard().grid().comm().max(well_was_shut);
// Only log a message on the output rank.
if (terminal_output_ && well_was_shut) {
const std::string msg = "Well " + wellname
+ " will be shut because it cannot get converged.";
OpmLog::info(msg);
}
return (well_was_shut == 1);
}
template<typename TypeTag>
std::vector< Well >
BlackoilWellModel<TypeTag>::
getLocalNonshutWells(const int timeStepIdx, int& globalNumWells) const
{
auto w = schedule().getWells(timeStepIdx);
globalNumWells = w.size();
w.erase(std::remove_if(w.begin(), w.end(), is_shut_or_defunct_), w.end());
return w;
}
template<typename TypeTag>
std::vector< ParallelWellInfo* >
BlackoilWellModel<TypeTag>::createLocalParallelWellInfo(const std::vector<Well>& wells)
{
std::vector< ParallelWellInfo* > local_parallel_well_info;
local_parallel_well_info.reserve(wells.size());
for (const auto& well : wells)
{
auto wellPair = std::make_pair(well.name(), true);
auto pwell = std::lower_bound(parallel_well_info_.begin(),
parallel_well_info_.end(),
wellPair);
assert(pwell != parallel_well_info_.end() &&
*pwell == wellPair);
local_parallel_well_info.push_back(&(*pwell));
}
return local_parallel_well_info;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginReportStep(const int timeStepIdx)
{
Opm::DeferredLogger local_deferredLogger;
report_step_starts_ = true;
const Grid& grid = ebosSimulator_.vanguard().grid();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
int globalNumWells = 0;
// Make wells_ecl_ contain only this partition's non-shut wells.
wells_ecl_ = getLocalNonshutWells(timeStepIdx, globalNumWells);
local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
// The well state initialize bhp with the cell pressure in the top cell.
// We must therefore provide it with updated cell pressures
this->initializeWellPerfData();
this->initializeWellState(timeStepIdx, globalNumWells, summaryState);
// Wells are active if they are active wells on at least
// one process.
wells_active_ = localWellsActive() ? 1 : 0;
wells_active_ = grid.comm().max(wells_active_);
// handling MS well related
if (param_.use_multisegment_well_&& anyMSWellOpenLocal()) { // if we use MultisegmentWell model
well_state_.initWellStateMSWell(wells_ecl_, phase_usage_, &previous_well_state_);
}
const int nw = wells_ecl_.size();
for (int w = 0; w <nw; ++w) {
const auto& well = wells_ecl_[w];
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::PRODUCTION_UPDATE
+ ScheduleEvents::INJECTION_UPDATE
+ ScheduleEvents::NEW_WELL;
if(!schedule()[timeStepIdx].wellgroup_events().hasEvent(well.name(), effective_events_mask))
continue;
if (well.isProducer()) {
const auto controls = well.productionControls(summaryState);
well_state_.currentProductionControls()[w] = controls.cmode;
}
else {
const auto controls = well.injectionControls(summaryState);
well_state_.currentInjectionControls()[w] = controls.cmode;
}
}
const Group& fieldGroup = schedule().getGroup("FIELD", timeStepIdx);
WellGroupHelpers::setCmodeGroup(fieldGroup, schedule(), summaryState, timeStepIdx, well_state_);
// Compute reservoir volumes for RESV controls.
rateConverter_.reset(new RateConverterType (phase_usage_,
std::vector<int>(local_num_cells_, 0)));
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
{
const auto& sched_state = this->schedule()[timeStepIdx];
// update VFP properties
vfp_properties_.reset(new VFPProperties( sched_state.vfpinj(), sched_state.vfpprod()) );
this->initializeWellProdIndCalculators();
if (sched_state.events().hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX)) {
this->runWellPIScaling(timeStepIdx, local_deferredLogger);
}
}
// update the previous well state. This is used to restart failed steps.
previous_well_state_ = well_state_;
}
// called at the beginning of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginTimeStep() {
updatePerforationIntensiveQuantities();
Opm::DeferredLogger local_deferredLogger;
well_state_ = previous_well_state_;
well_state_.disableGliftOptimization();
const int reportStepIdx = ebosSimulator_.episodeIndex();
const double simulationTime = ebosSimulator_.time();
int exception_thrown = 0;
try {
// test wells
wellTesting(reportStepIdx, simulationTime, local_deferredLogger);
// create the well container
well_container_ = createWellContainer(reportStepIdx);
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
}
// update the updated cell flag
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
for (auto& well : well_container_) {
well->updatePerforatedCell(is_cell_perforated_);
}
// calculate the efficiency factors for each well
calculateEfficiencyFactors(reportStepIdx);
if constexpr (has_polymer_)
{
if (PolymerModule::hasPlyshlog() || getPropValue<TypeTag, Properties::EnablePolymerMW>() ) {
setRepRadiusPerfLength();
}
}
} catch (std::exception& e) {
exception_thrown = 1;
}
logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "beginTimeStep() failed.", terminal_output_);
for (auto& well : well_container_) {
well->setVFPProperties(vfp_properties_.get());
well->setGuideRate(guideRate_.get());
}
// Close completions due to economical reasons
for (auto& well : well_container_) {
well->closeCompletions(wellTestState_);
}
// calculate the well potentials
try {
std::vector<double> well_potentials;
computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger);
} catch ( std::runtime_error& e ) {
const std::string msg = "A zero well potential is returned for output purposes. ";
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
}
if (alternative_well_rate_init_) {
// Update the well rates of well_state_, if only single-phase rates, to
// have proper multi-phase rates proportional to rates at bhp zero.
// This is done only for producers, as injectors will only have a single
// nonzero phase anyway.
for (auto& well : well_container_) {
if (well->isProducer()) {
well->updateWellStateRates(ebosSimulator_, well_state_, local_deferredLogger);
}
}
}
//compute well guideRates
const auto& comm = ebosSimulator_.vanguard().grid().comm();
WellGroupHelpers::updateGuideRatesForWells(schedule(), phase_usage_, reportStepIdx, simulationTime, well_state_, comm, guideRate_.get());
try {
updateAndCommunicateGroupData();
// Compute initial well solution for new wells
for (auto& well : well_container_) {
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::NEW_WELL;
const auto& events = schedule()[reportStepIdx].wellgroup_events();
const bool event = report_step_starts_ && events.hasEvent(well->name(), effective_events_mask);
if (event) {
try {
well->calculateExplicitQuantities(ebosSimulator_, well_state_, local_deferredLogger);
well->solveWellEquation(ebosSimulator_, well_state_, local_deferredLogger);
} catch (std::exception& e) {
const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates";
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
}
}
}
} catch (std::exception& e) {
const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates";
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
}
logAndCheckForExceptionsAndThrow(local_deferredLogger,
exception_thrown, "beginTimeStep() failed.", terminal_output_);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::gliftDebug(
const std::string &msg, Opm::DeferredLogger &deferred_logger) const
{
if (this->glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : BlackoilWellModel : {}", msg);
deferred_logger.info(message);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger) {
const auto& wtest_config = schedule()[timeStepIdx].wtest_config();
if (wtest_config.size() != 0) { // there is a WTEST request
// average B factors are required for the convergence checking of well equations
// Note: this must be done on all processes, even those with
// no wells needing testing, otherwise we will have locking.
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
const auto& wellsForTesting = wellTestState_.updateWells(wtest_config, wells_ecl_, simulationTime);
for (const auto& testWell : wellsForTesting) {
const std::string& well_name = testWell.first;
// this is the well we will test
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger);
// some preparation before the well can be used
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
const Well& wellEcl = schedule().getWell(well_name, timeStepIdx);
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor);
well->setWellEfficiencyFactor(well_efficiency_factor);
well->setVFPProperties(vfp_properties_.get());
well->setGuideRate(guideRate_.get());
const WellTestConfig::Reason testing_reason = testWell.second;
well->wellTesting(ebosSimulator_, B_avg, simulationTime, timeStepIdx,
testing_reason, well_state_, wellTestState_, deferred_logger);
}
}
}
// called at the end of a report step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
endReportStep() {
// Clear the communication data structures for above values.
for(auto&& pinfo : local_parallel_well_info_)
{
pinfo->clear();
}
}
// called at the end of a report step
template<typename TypeTag>
const SimulatorReportSingle&
BlackoilWellModel<TypeTag>::
lastReport() const {return last_report_; }
// called at the end of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
timeStepSucceeded(const double& simulationTime, const double dt) {
// time step is finished and we are not any more at the beginning of an report step
report_step_starts_ = false;
const int reportStepIdx = ebosSimulator_.episodeIndex();
Opm::DeferredLogger local_deferredLogger;
for (const auto& well : well_container_) {
if (getPropValue<TypeTag, Properties::EnablePolymerMW>() && well->isInjector()) {
well->updateWaterThroughput(dt, well_state_);
}
}
updateWellTestState(simulationTime, wellTestState_);
// update the rate converter with current averages pressures etc in
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
// calculate the well potentials
try {
std::vector<double> well_potentials;
computeWellPotentials(well_potentials, reportStepIdx, local_deferredLogger);
} catch ( std::runtime_error& e ) {
const std::string msg = "A zero well potential is returned for output purposes. ";
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
}
// check group sales limits at the end of the timestep
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
checkGconsaleLimits(fieldGroup, well_state_, local_deferredLogger);
this->calculateProductivityIndexValues(local_deferredLogger);
previous_well_state_ = well_state_;
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
}
template<typename TypeTag>
template <class Context>
void
BlackoilWellModel<TypeTag>::
computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
rate = 0;
int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!is_cell_perforated_[elemIdx])
return;
for (const auto& well : well_container_)
well->addCellRates(rate, elemIdx);
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
well(const std::string& wellName) const
{
for (const auto& well : well_container_) {
if (well->name() == wellName) {
return well;
}
}
OPM_THROW(std::invalid_argument, "The well with name " + wellName + " is not in the well Container");
return nullptr;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initFromRestartFile(const RestartValue& restartValues)
{
// The restart step value is used to identify wells present at the given
// time step. Wells that are added at the same time step as RESTART is initiated
// will not be present in a restart file. Use the previous time step to retrieve
// wells that have information written to the restart file.
const int report_step = std::max(eclState().getInitConfig().getRestartStep() - 1, 0);
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
int globalNumWells = 0;
// Make wells_ecl_ contain only this partition's non-shut wells.
wells_ecl_ = getLocalNonshutWells(report_step, globalNumWells);
local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
this->initializeWellProdIndCalculators();
initializeWellPerfData();
const int nw = wells_ecl_.size();
if (nw > 0) {
const auto phaseUsage = phaseUsageFromDeck(eclState());
const size_t numCells = Opm::UgGridHelpers::numCells(grid());
const bool handle_ms_well = (param_.use_multisegment_well_ && anyMSWellOpenLocal());
well_state_.resize(wells_ecl_, local_parallel_well_info_, schedule(), handle_ms_well, numCells, phaseUsage, well_perf_data_, summaryState, globalNumWells); // Resize for restart step
wellsToState(restartValues.wells, restartValues.grp_nwrk, phaseUsage, handle_ms_well, well_state_);
}
previous_well_state_ = well_state_;
initial_step_ = false;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initializeWellProdIndCalculators()
{
this->prod_index_calc_.clear();
this->prod_index_calc_.reserve(this->wells_ecl_.size());
for (const auto& well : this->wells_ecl_) {
this->prod_index_calc_.emplace_back(well);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initializeWellPerfData()
{
well_perf_data_.resize(wells_ecl_.size());
int well_index = 0;
for (const auto& well : wells_ecl_) {
int completion_index = 0;
// INVALID_ECL_INDEX marks no above perf available
int completion_index_above = ParallelWellInfo::INVALID_ECL_INDEX;
well_perf_data_[well_index].clear();
well_perf_data_[well_index].reserve(well.getConnections().size());
CheckDistributedWellConnections checker(well, *local_parallel_well_info_[well_index]);
bool hasFirstPerforation = false;
bool firstOpenCompletion = true;
auto& parallelWellInfo = *local_parallel_well_info_[well_index];
parallelWellInfo.beginReset();
for (const auto& completion : well.getConnections()) {
const int active_index =
cartesian_to_compressed_[completion.global_index()];
if (completion.state() == Connection::State::OPEN) {
if (active_index >= 0) {
if (firstOpenCompletion)
{
hasFirstPerforation = true;
}
checker.connectionFound(completion_index);
PerforationData pd;
pd.cell_index = active_index;
pd.connection_transmissibility_factor = completion.CF();
pd.satnum_id = completion.satTableId();
pd.ecl_index = completion_index;
well_perf_data_[well_index].push_back(pd);
parallelWellInfo.pushBackEclIndex(completion_index_above,
completion_index);
}
firstOpenCompletion = false;
// Next time this index is the one above as each open completion is
// is stored somehwere.
completion_index_above = completion_index;
} else {
checker.connectionFound(completion_index);
if (completion.state() != Connection::State::SHUT) {
OPM_THROW(std::runtime_error,
"Completion state: " << Connection::State2String(completion.state()) << " not handled");
}
}
// Note: we rely on the connections being filtered! I.e. there are only connections
// to active cells in the global grid.
++completion_index;
}
parallelWellInfo.endReset();
checker.checkAllConnectionsFound();
parallelWellInfo.communicateFirstPerforation(hasFirstPerforation);
++well_index;
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initializeWellState(const int timeStepIdx,
const int globalNumWells,
const SummaryState& summaryState)
{
std::vector<double> cellPressures(this->local_num_cells_, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
if (elemIt->partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState();
// copy of get perfpressure in Standard well except for value
double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)];
if (Indices::oilEnabled) {
perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value();
} else if (Indices::waterEnabled) {
perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value();
} else {
perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value();
}
}
well_state_.init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx,
&previous_well_state_, phase_usage_, well_perf_data_,
summaryState, globalNumWells);
}
template<typename TypeTag>
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
BlackoilWellModel<TypeTag>::
createWellContainer(const int time_step)
{
std::vector<WellInterfacePtr> well_container;
Opm::DeferredLogger local_deferredLogger;
const int nw = numLocalWells();
if (nw > 0) {
well_container.reserve(nw);
for (int w = 0; w < nw; ++w) {
const Well& well_ecl = wells_ecl_[w];
const std::string& well_name = well_ecl.name();
// A new WCON keywords can re-open a well that was closed/shut due to Physical limit
if ( wellTestState_.hasWellClosed(well_name)) {
// TODO: more checking here, to make sure this standard more specific and complete
// maybe there is some WCON keywords will not open the well
if (well_state_.effectiveEventsOccurred(w)) {
if (wellTestState_.lastTestTime(well_name) == ebosSimulator_.time()) {
// The well was shut this timestep, we are most likely retrying
// a timestep without the well in question, after it caused
// repeated timestep cuts. It should therefore not be opened,
// even if it was new or received new targets this report step.
well_state_.setEffectiveEventsOccurred(w, false);
} else {
wellTestState_.openWell(well_name);
}
}
}
// TODO: should we do this for all kinds of closing reasons?
// something like wellTestState_.hasWell(well_name)?
bool wellIsStopped = false;
if ( wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::ECONOMIC) ||
wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::PHYSICAL) ) {
if( well_ecl.getAutomaticShutIn() ) {
// shut wells are not added to the well container
well_state_.shutWell(w);
continue;
} else {
// stopped wells are added to the container but marked as stopped
well_state_.stopWell(w);
wellIsStopped = true;
}
}
// Due to ACTIONX the well might have been closed 'behind our back'.
const auto well_status = schedule().getWell(well_name, time_step).getStatus();
if (well_status == Well::Status::SHUT) {
well_state_.shutWell(w);
continue;
}
// If a production well disallows crossflow and its
// (prediction type) rate control is zero, then it is effectively shut.
if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) {
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
auto prod_controls = well_ecl.productionControls(summaryState);
bool zero_rate_control = false;
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
zero_rate_control = (prod_controls.oil_rate == 0.0);
break;
case Well::ProducerCMode::WRAT:
zero_rate_control = (prod_controls.water_rate == 0.0);
break;
case Well::ProducerCMode::GRAT:
zero_rate_control = (prod_controls.gas_rate == 0.0);
break;
case Well::ProducerCMode::LRAT:
zero_rate_control = (prod_controls.liquid_rate == 0.0);
break;
case Well::ProducerCMode::RESV:
zero_rate_control = (prod_controls.resv_rate == 0.0);
break;
default:
// Might still have zero rate controls, but is pressure controlled.
zero_rate_control = false;
}
if (zero_rate_control) {
// Treat as shut, do not add to container.
local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name());
well_state_.shutWell(w);
continue;
}
}
if (well_status == Well::Status::STOP) {
well_state_.stopWell(w);
wellIsStopped = true;
}
well_container.emplace_back(this->createWellPointer(w, time_step));
if (wellIsStopped)
well_container.back()->stopWell();
}
}
// Collect log messages and print.
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
return well_container;
}
template <typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
createWellPointer(const int wellID, const int time_step) const
{
const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment();
if (! (this->param_.use_multisegment_well_ && is_multiseg)) {
return this->template createTypedWellPointer<StandardWell<TypeTag>>(wellID, time_step);
}
else {
return this->template createTypedWellPointer<MultisegmentWell<TypeTag>>(wellID, time_step);
}
}
template <typename TypeTag>
template <typename WellType>
std::unique_ptr<WellType>
BlackoilWellModel<TypeTag>::
createTypedWellPointer(const int wellID, const int time_step) const
{
// Use the pvtRegionIdx from the top cell
const auto& perf_data = this->well_perf_data_[wellID];
// Cater for case where local part might have no perforations.
const int pvtreg = perf_data.empty() ?
0 : pvt_region_idx_[perf_data.front().cell_index];
const auto& parallel_well_info = *local_parallel_well_info_[wellID];
auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
return std::make_unique<WellType>(this->wells_ecl_[wellID],
parallel_well_info,
time_step,
this->param_,
*this->rateConverter_,
global_pvtreg,
this->numComponents(),
this->numPhases(),
wellID,
this->well_state_.firstPerfIndex()[wellID],
perf_data);
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
createWellForWellTest(const std::string& well_name,
const int report_step,
Opm::DeferredLogger& deferred_logger) const
{
// Finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well_ecl = 0;
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
if (well_name == wells_ecl_[index_well_ecl].name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well_ecl == nw_wells_ecl) {
OPM_DEFLOG_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ", deferred_logger);
}
return this->createWellPointer(index_well_ecl, report_step);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assemble(const int iterationIdx,
const double dt)
{
Opm::DeferredLogger local_deferredLogger;
if (this->glift_debug) {
const std::string msg = fmt::format(
"assemble() : iteration {}" , iterationIdx);
gliftDebug(msg, local_deferredLogger);
}
last_report_ = SimulatorReportSingle();
Dune::Timer perfTimer;
perfTimer.start();
if ( ! wellsActive() ) {
return;
}
updatePerforationIntensiveQuantities();
int exception_thrown = 0;
try {
if (iterationIdx == 0) {
calculateExplicitQuantities(local_deferredLogger);
prepareTimeStep(local_deferredLogger);
}
updateWellControls(local_deferredLogger, /* check group controls */ true);
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
for (auto& well : well_container_) {
well->solveWellEquation(ebosSimulator_, well_state_, local_deferredLogger);
}
updateWellControls(local_deferredLogger, /* check group controls */ false);
}
gliftDebug("assemble() : running assembleWellEq()..", local_deferredLogger);
well_state_.enableGliftOptimization();
assembleWellEq(B_avg, dt, local_deferredLogger);
well_state_.disableGliftOptimization();
} catch (std::exception& e) {
exception_thrown = 1;
}
logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "assemble() failed.", terminal_output_);
last_report_.converged = true;
last_report_.assemble_time_well += perfTimer.stop();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assembleWellEq(const std::vector<Scalar>& B_avg, const double dt, Opm::DeferredLogger& deferred_logger)
{
for (auto& well : well_container_) {
well->maybeDoGasLiftOptimization(
well_state_, ebosSimulator_, deferred_logger);
well->assembleWellEq(ebosSimulator_, B_avg, dt, well_state_, deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(r);
}
}
// Ax = A x - C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
// TODO: do we still need localWellsActive()?
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(x, Ax);
}
}
#if HAVE_CUDA || HAVE_OPENCL
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
getWellContributions(WellContributions& wellContribs) const
{
// prepare for StandardWells
wellContribs.setBlockSize(StandardWell<TypeTag>::numEq, StandardWell<TypeTag>::numStaticWellEq);
for(unsigned int i = 0; i < well_container_.size(); i++){
auto& well = well_container_[i];
std::shared_ptr<StandardWell<TypeTag> > derived = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
if (derived) {
unsigned int numBlocks;
derived->getNumBlocks(numBlocks);
wellContribs.addNumBlocks(numBlocks);
}
}
// allocate memory for data from StandardWells
wellContribs.alloc();
for(unsigned int i = 0; i < well_container_.size(); i++){
auto& well = well_container_[i];
// maybe WellInterface could implement addWellContribution()
auto derived_std = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
if (derived_std) {
derived_std->addWellContribution(wellContribs);
} else {
auto derived_ms = std::dynamic_pointer_cast<MultisegmentWell<TypeTag> >(well);
if (derived_ms) {
derived_ms->addWellContribution(wellContribs);
} else {
OpmLog::warning("Warning unknown type of well");
}
}
}
}
#endif
// Ax = Ax - alpha * C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
// scaleAddRes_ = - C D^-1 B x
apply( x, scaleAddRes_ );
// Ax = Ax + alpha * scaleAddRes_
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x)
{
Opm::DeferredLogger local_deferredLogger;
int exception_thrown = 0;
try {
if (localWellsActive()) {
for (auto& well : well_container_) {
well->recoverWellSolutionAndUpdateWellState(x, well_state_, local_deferredLogger);
}
}
} catch (std::exception& e) {
exception_thrown = 1;
}
logAndCheckForExceptionsAndThrow(local_deferredLogger, exception_thrown, "recoverWellSolutionAndUpdateWellState() failed.", terminal_output_);
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
wellsActive() const
{
return wells_active_;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
localWellsActive() const
{
return numLocalWells() > 0;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->initPrimaryVariablesEvaluation();
}
}
template<typename TypeTag>
ConvergenceReport
BlackoilWellModel<TypeTag>::
getWellConvergence(const std::vector<Scalar>& B_avg, bool checkGroupConvergence) const
{
Opm::DeferredLogger local_deferredLogger;
// Get global (from all processes) convergence report.
ConvergenceReport local_report;
for (const auto& well : well_container_) {
if (well->isOperable() ) {
local_report += well->getWellConvergence(well_state_, B_avg, local_deferredLogger);
}
}
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
ConvergenceReport report = gatherConvergenceReport(local_report);
// Log debug messages for NaN or too large residuals.
if (terminal_output_) {
for (const auto& f : report.wellFailures()) {
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
} else if (f.severity() == ConvergenceReport::Severity::TooLarge) {
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
}
}
}
if (checkGroupConvergence) {
const int reportStepIdx = ebosSimulator_.episodeIndex();
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
bool violated = checkGroupConstraints(fieldGroup, global_deferredLogger);
report.setGroupConverged(!violated);
}
return report;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const
{
// TODO: checking isOperable() ?
for (auto& well : well_container_) {
well->calculateExplicitQuantities(ebosSimulator_, well_state_, deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControls)
{
// Even if there are no wells active locally, we cannot
// return as the DeferredLogger uses global communication.
// For no well active globally we simply return.
if( !wellsActive() ) return ;
updateAndCommunicateGroupData();
updateNetworkPressures();
std::set<std::string> switched_wells;
std::set<std::string> switched_groups;
if (checkGroupControls) {
// Check group individual constraints.
updateGroupIndividualControls(deferred_logger, switched_groups);
// Check group's constraints from higher levels.
updateGroupHigherControls(deferred_logger, switched_groups);
updateAndCommunicateGroupData();
// Check wells' group constraints and communicate.
for (const auto& well : well_container_) {
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Group;
const bool changed = well->updateWellControl(ebosSimulator_, mode, well_state_, deferred_logger);
if (changed) {
switched_wells.insert(well->name());
}
}
updateAndCommunicateGroupData();
}
// Check individual well constraints and communicate.
for (const auto& well : well_container_) {
if (switched_wells.count(well->name())) {
continue;
}
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Individual;
well->updateWellControl(ebosSimulator_, mode, well_state_, deferred_logger);
}
updateAndCommunicateGroupData();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateNetworkPressures()
{
// Get the network and return if inactive.
const int reportStepIdx = ebosSimulator_.episodeIndex();
const auto& network = schedule()[reportStepIdx].network();
if (!network.active()) {
return;
}
node_pressures_ = WellGroupHelpers::computeNetworkPressures(
network, well_state_, *(vfp_properties_->getProd()), schedule(), reportStepIdx);
// Set the thp limits of wells
for (auto& well : well_container_) {
// Producers only, since we so far only support the
// "extended" network model (properties defined by
// BRANPROP and NODEPROP) which only applies to producers.
if (well->isProducer()) {
const auto it = node_pressures_.find(well->wellEcl().groupName());
if (it != node_pressures_.end()) {
// The well belongs to a group with has a network pressure constraint,
// set the dynamic THP constraint of the well accordingly.
well->setDynamicThpLimit(it->second);
}
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateAndCommunicateGroupData()
{
const int reportStepIdx = ebosSimulator_.episodeIndex();
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
const int nupcol = schedule()[reportStepIdx].nupcol();
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
// This builds some necessary lookup structures, so it must be called
// before we copy to well_state_nupcol_.
const auto& comm = ebosSimulator_.vanguard().grid().comm();
well_state_.updateGlobalIsGrup(schedule(), reportStepIdx, comm);
if (iterationIdx < nupcol) {
well_state_nupcol_ = well_state_;
}
// the group target reduction rates needs to be update since wells may have swicthed to/from GRUP control
// Currently the group target reduction does not honor NUPCOL. TODO: is that true?
std::vector<double> groupTargetReduction(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, *guideRate_, well_state_nupcol_, well_state_, groupTargetReduction);
std::vector<double> groupTargetReductionInj(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, *guideRate_, well_state_nupcol_, well_state_, groupTargetReductionInj);
const double simulationTime = ebosSimulator_.time();
std::vector<double> pot(numPhases(), 0.0);
WellGroupHelpers::updateGuideRateForGroups(fieldGroup, schedule(), phase_usage_, reportStepIdx, simulationTime, /*isInjector*/ false, well_state_, comm, guideRate_.get(), pot);
std::vector<double> potInj(numPhases(), 0.0);
WellGroupHelpers::updateGuideRateForGroups(fieldGroup, schedule(), phase_usage_, reportStepIdx, simulationTime, /*isInjector*/ true, well_state_, comm, guideRate_.get(), potInj);
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState, well_state_nupcol_, well_state_);
WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_, well_state_);
WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_, well_state_);
WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_, well_state_);
// We use the rates from the privious time-step to reduce oscilations
WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, previous_well_state_, well_state_);
// Set ALQ for off-process wells to zero
for (const auto& wname : schedule().wellNames(reportStepIdx)) {
const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer();
const bool not_on_this_process = well_state_.wellMap().count(wname) == 0;
if (is_producer && not_on_this_process) {
well_state_.setALQ(wname, 0.0);
}
}
well_state_.communicateGroupRates(comm);
// compute wsolvent fraction for REIN wells
updateWsolvent(fieldGroup, schedule(), reportStepIdx, well_state_nupcol_);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
{
Opm::DeferredLogger local_deferredLogger;
for (const auto& well : well_container_) {
well->updateWellTestState(well_state_, simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger);
}
Opm::DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellPotentials(std::vector<double>& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger)
{
// number of wells and phases
const int nw = numLocalWells();
const int np = numPhases();
well_potentials.resize(nw * np, 0.0);
auto well_state_copy = well_state_;
// average B factors are required for the convergence checking of well equations
// Note: this must be done on all processes, even those with
// no wells needing testing, otherwise we will have locking.
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
const Opm::SummaryConfig& summaryConfig = ebosSimulator_.vanguard().summaryConfig();
const bool write_restart_file = ebosSimulator_.vanguard().schedule().restart().getWriteRestartFile(reportStepIdx);
int exception_thrown = 0;
for (const auto& well : well_container_) {
const bool needed_for_summary = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) ||
((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer());
bool needPotentialsForGuideRate = true;//eclWell.getGuideRatePhase() == Well::GuideRateTarget::UNDEFINED;
if (write_restart_file || needed_for_summary || needPotentialsForGuideRate)
{
try {
std::vector<double> potentials;
well->computeWellPotentials(ebosSimulator_, B_avg, well_state_copy, potentials, deferred_logger);
// putting the sucessfully calculated potentials to the well_potentials
for (int p = 0; p < np; ++p) {
well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]);
}
} catch (std::exception& e) {
exception_thrown = 1;
}
}
}
logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "computeWellPotentials() failed.", terminal_output_);
// Store it in the well state
well_state_.wellPotentials() = well_potentials;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateProductivityIndexValues(DeferredLogger& deferred_logger)
{
if (! this->localWellsActive()) {
return;
}
for (const auto& wellPtr : this->well_container_) {
wellPtr->updateProductivityIndex(this->ebosSimulator_,
this->prod_index_calc_[wellPtr->indexOfWell()],
this->well_state_,
deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareTimeStep(Opm::DeferredLogger& deferred_logger)
{
int exception_thrown = 0;
try {
for (const auto& well : well_container_) {
well->checkWellOperability(ebosSimulator_, well_state_, deferred_logger);
}
// since the controls are all updated, we should update well_state accordingly
for (const auto& well : well_container_) {
const int w = well->indexOfWell();
if (!well->isOperable() ) continue;
if (well_state_.effectiveEventsOccurred(w) ) {
well->updateWellStateWithTarget(ebosSimulator_, well_state_, deferred_logger);
}
// there is no new well control change input within a report step,
// so next time step, the well does not consider to have effective events anymore
// TODO: if we can know whether this is the first time step within the report step,
// we do not need to set it to false
// TODO: we should do this at the end of the time step in case we will need it within
// this time step somewhere
if (well_state_.effectiveEventsOccurred(w) ) {
well_state_.setEffectiveEventsOccurred(w, false);
}
} // end of for (const auto& well : well_container_)
updatePrimaryVariables(deferred_logger);
} catch (std::exception& e) {
exception_thrown = 1;
}
logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "prepareTimestep() failed.", terminal_output_);
}
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState() const { return well_state_; }
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); }
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateEfficiencyFactors(const int reportStepIdx)
{
if ( !localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
const Well& wellEcl = well->wellEcl();
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor);
well->setWellEfficiencyFactor(well_efficiency_factor);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells)
{
cartesian_to_compressed_.resize(number_of_cartesian_cells, -1);
if (global_cell) {
auto elemIt = ebosSimulator_.gridView().template begin</*codim=*/ 0>();
for (unsigned i = 0; i < local_num_cells_; ++i) {
// Skip perforations in the overlap/ghost for distributed wells.
if (elemIt->partitionType() == Dune::InteriorEntity)
{
assert(ebosSimulator_.gridView().indexSet().index(*elemIt) == static_cast<int>(i));
cartesian_to_compressed_[global_cell[i]] = i;
}
++elemIt;
}
}
else {
for (unsigned i = 0; i < local_num_cells_; ++i) {
cartesian_to_compressed_[i] = i;
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setRepRadiusPerfLength()
{
for (const auto& well : well_container_) {
well->setRepRadiusPerfLength(cartesian_to_compressed_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeAverageFormationFactor(std::vector<Scalar>& B_avg) const
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator_);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
auto& B = B_avg[ compIdx ];
B += 1 / fs.invB(phaseIdx).value();
}
if constexpr (has_solvent_) {
auto& B = B_avg[solventSaturationIdx];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
{
bval/=global_num_cells_;
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePrimaryVariables(Opm::DeferredLogger& deferred_logger)
{
for (const auto& well : well_container_) {
well->updatePrimaryVariables(well_state_, deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& eclProblem = ebosSimulator_.problem();
const unsigned numCells = grid.size(/*codim=*/0);
pvt_region_idx_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
pvt_region_idx_[cellIdx] =
eclProblem.pvtRegionIndex(cellIdx);
}
}
// The number of components in the model.
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::numComponents() const
{
if (wellsActive() && numPhases() < 3) {
return numPhases();
}
int numComp = FluidSystem::numComponents;
if constexpr (has_solvent_) {
numComp ++;
}
return numComp;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>:: numLocalWells() const
{
return wells_ecl_.size();
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::numPhases() const
{
return phase_usage_.num_phases;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const unsigned numCells = grid.size(/*codim=*/0);
depth_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
depth_[cellIdx] = Opm::UgGridHelpers::cellCenterDepth( grid, cellIdx );
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePerforationIntensiveQuantities() {
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
int elemIdx = elemCtx.globalSpaceIndex(0, 0);
if (!is_cell_perforated_[elemIdx]) {
continue;
}
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
// convert well data from opm-common to well state from opm-core
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
wellsToState( const data::Wells& wells,
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellStateFullyImplicitBlackoil& state) const
{
using GPMode = Group::ProductionCMode;
using GIMode = Group::InjectionCMode;
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector< rt > phs( np );
if( phases.phase_used[BlackoilPhases::Aqua] ) {
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( phases.phase_used[BlackoilPhases::Liquid] ) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( phases.phase_used[BlackoilPhases::Vapour] ) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for( const auto& wm : state.wellMap() ) {
const auto well_index = wm.second[ 0 ];
const auto& well = wells.at( wm.first );
state.bhp()[ well_index ] = well.bhp;
state.temperature()[ well_index ] = well.temperature;
if (well.current_control.isProducer) {
state.currentProductionControls()[ well_index ] = well.current_control.prod;
}
else {
state.currentInjectionControls()[ well_index ] = well.current_control.inj;
}
const auto wellrate_index = well_index * np;
for( size_t i = 0; i < phs.size(); ++i ) {
assert( well.rates.has( phs[ i ] ) );
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
}
const auto perforation_pressure = []( const data::Connection& comp ) {
return comp.pressure;
};
const auto perforation_reservoir_rate = []( const data::Connection& comp ) {
return comp.reservoir_rate;
};
std::transform( well.connections.begin(),
well.connections.end(),
state.perfPress().begin() + wm.second[ 1 ],
perforation_pressure );
std::transform( well.connections.begin(),
well.connections.end(),
state.perfRates().begin() + wm.second[ 1 ],
perforation_reservoir_rate );
int local_comp_index = 0;
for (const data::Connection& comp : well.connections) {
const int global_comp_index = wm.second[1] + local_comp_index;
for (int phase_index = 0; phase_index < np; ++phase_index) {
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
}
++local_comp_index;
}
if (handle_ms_well && !well.segments.empty()) {
// we need the well_ecl_ information
const std::string& well_name = wm.first;
const Well& well_ecl = getWellEcl(well_name);
const WellSegments& segment_set = well_ecl.getSegments();
const int top_segment_index = state.topSegmentIndex(well_index);
const auto& segments = well.segments;
// \Note: eventually we need to hanlde the situations that some segments are shut
assert(0u + segment_set.size() == segments.size());
for (const auto& segment : segments) {
const int segment_index = segment_set.segmentNumberToIndex(segment.first);
// recovering segment rates and pressure from the restart values
const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure;
state.segPress()[top_segment_index + segment_index] = segment.second.pressures[pres_idx];
const auto& segment_rates = segment.second.rates;
for (int p = 0; p < np; ++p) {
state.segRates()[(top_segment_index + segment_index) * np + p] = segment_rates.get(phs[p]);
}
}
}
}
for (const auto& [group, value] : grpNwrkValues.groupData) {
const auto cpc = value.currentControl.currentProdConstraint;
const auto cgi = value.currentControl.currentGasInjectionConstraint;
const auto cwi = value.currentControl.currentWaterInjectionConstraint;
if (cpc != GPMode::NONE) {
state.setCurrentProductionGroupControl(group, cpc);
}
if (cgi != GIMode::NONE) {
state.setCurrentInjectionGroupControl(Phase::GAS, group, cgi);
}
if (cwi != GIMode::NONE) {
state.setCurrentInjectionGroupControl(Phase::WATER, group, cwi);
}
}
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
anyMSWellOpenLocal() const
{
for (const auto& well : wells_ecl_) {
if (well.isMultiSegment()) {
return true;
}
}
return false;
}
template<typename TypeTag>
const Well&
BlackoilWellModel<TypeTag>::
getWellEcl(const std::string& well_name) const
{
// finding the iterator of the well in wells_ecl
auto well_ecl = std::find_if(wells_ecl_.begin(),
wells_ecl_.end(),
[&well_name](const Well& elem)->bool {
return elem.name() == well_name;
});
assert(well_ecl != wells_ecl_.end());
return *well_ecl;
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
getWell(const std::string& well_name) const
{
// finding the iterator of the well in wells_ecl
auto well = std::find_if(well_container_.begin(),
well_container_.end(),
[&well_name](const WellInterfacePtr& elem)->bool {
return elem->name() == well_name;
});
assert(well != well_container_.end());
return *well;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateGroupIndividualControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
{
const int reportStepIdx = ebosSimulator_.episodeIndex();
const int nupcol = schedule()[reportStepIdx].nupcol();
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
// don't switch group control when iterationIdx > nupcol
// to avoid oscilations between group controls
if (iterationIdx > nupcol)
return;
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
updateGroupIndividualControl(fieldGroup, deferred_logger, switched_groups);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateGroupIndividualControl(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups) {
const int reportStepIdx = ebosSimulator_.episodeIndex();
const bool skip = switched_groups.count(group.name());
if (!skip && group.isInjectionGroup())
{
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
Group::InjectionCMode newControl = checkGroupInjectionConstraints(group, phase);
if (newControl != Group::InjectionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, newControl, phase, deferred_logger);
}
}
}
if (!skip && group.isProductionGroup()) {
Group::ProductionCMode newControl = checkGroupProductionConstraints(group, deferred_logger);
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto controls = group.productionControls(summaryState);
if (newControl != Group::ProductionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, controls.exceed_action, newControl, deferred_logger);
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
updateGroupIndividualControl( schedule().getGroup(groupName, reportStepIdx), deferred_logger, switched_groups);
}
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
checkGroupConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const {
const int reportStepIdx = ebosSimulator_.episodeIndex();
if (group.isInjectionGroup()) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
Group::InjectionCMode newControl = checkGroupInjectionConstraints(group, phase);
if (newControl != Group::InjectionCMode::NONE) {
return true;
}
}
}
if (group.isProductionGroup()) {
Group::ProductionCMode newControl = checkGroupProductionConstraints(group, deferred_logger);
if (newControl != Group::ProductionCMode::NONE)
{
return true;
}
}
// call recursively down the group hiearchy
bool violated = false;
for (const std::string& groupName : group.groups()) {
violated = violated || checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger);
}
return violated;
}
template<typename TypeTag>
Group::ProductionCMode
BlackoilWellModel<TypeTag>::
checkGroupProductionConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const {
const int reportStepIdx = ebosSimulator_.episodeIndex();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const auto& well_state = well_state_;
const auto controls = group.productionControls(summaryState);
const Group::ProductionCMode& currentControl = well_state.currentProductionGroupControl(group.name());
if (group.has_control(Group::ProductionCMode::ORAT))
{
if (currentControl != Group::ProductionCMode::ORAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.oil_target < current_rate ) {
return Group::ProductionCMode::ORAT;
}
}
}
if (group.has_control(Group::ProductionCMode::WRAT))
{
if (currentControl != Group::ProductionCMode::WRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.water_target < current_rate ) {
return Group::ProductionCMode::WRAT;
}
}
}
if (group.has_control(Group::ProductionCMode::GRAT))
{
if (currentControl != Group::ProductionCMode::GRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.gas_target < current_rate ) {
return Group::ProductionCMode::GRAT;
}
}
}
if (group.has_control(Group::ProductionCMode::LRAT))
{
if (currentControl != Group::ProductionCMode::LRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.liquid_target < current_rate ) {
return Group::ProductionCMode::LRAT;
}
}
}
if (group.has_control(Group::ProductionCMode::CRAT))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger);
}
if (group.has_control(Group::ProductionCMode::RESV))
{
if (currentControl != Group::ProductionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.resv_target < current_rate ) {
return Group::ProductionCMode::RESV;
}
}
}
if (group.has_control(Group::ProductionCMode::PRBL))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger);
}
return Group::ProductionCMode::NONE;
}
template<typename TypeTag>
Group::InjectionCMode
BlackoilWellModel<TypeTag>::
checkGroupInjectionConstraints(const Group& group, const Phase& phase) const {
const int reportStepIdx = ebosSimulator_.episodeIndex();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const auto& well_state = well_state_;
int phasePos;
if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid])
phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid];
else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua];
else
OPM_THROW(std::runtime_error, "Unknown phase" );
const auto& controls = group.injectionControls(phase, summaryState);
const Group::InjectionCMode& currentControl = well_state.currentInjectionGroupControl(phase, group.name());
if (controls.has_control(Group::InjectionCMode::RATE))
{
if (currentControl != Group::InjectionCMode::RATE)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.surface_max_rate < current_rate) {
return Group::InjectionCMode::RATE;
}
}
}
if (controls.has_control(Group::InjectionCMode::RESV))
{
if (currentControl != Group::InjectionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.resv_max_rate < current_rate) {
return Group::InjectionCMode::RESV;
}
}
}
if (controls.has_control(Group::InjectionCMode::REIN))
{
if (currentControl != Group::InjectionCMode::REIN)
{
double production_Rate = 0.0;
const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx);
production_Rate += WellGroupHelpers::sumWellRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false);
// sum over all nodes
production_Rate = comm.sum(production_Rate);
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm.sum(current_rate);
if (controls.target_reinj_fraction*production_Rate < current_rate) {
return Group::InjectionCMode::REIN;
}
}
}
if (controls.has_control(Group::InjectionCMode::VREP))
{
if (currentControl != Group::InjectionCMode::VREP)
{
double voidage_rate = 0.0;
const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
voidage_rate = comm.sum(voidage_rate);
double total_rate = 0.0;
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
total_rate = comm.sum(total_rate);
if (controls.target_void_fraction*voidage_rate < total_rate) {
return Group::InjectionCMode::VREP;
}
}
}
return Group::InjectionCMode::NONE;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
checkGconsaleLimits(const Group& group, WellState& well_state, Opm::DeferredLogger& deferred_logger) const
{
const int reportStepIdx = ebosSimulator_.episodeIndex();
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, deferred_logger);
}
// only for groups with gas injection controls
if (!group.hasInjectionControl(Phase::GAS)) {
return;
}
// check if gconsale is used for this group
if (!schedule()[reportStepIdx].gconsale().has(group.name()))
return;
std::ostringstream ss;
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState);
const Group::ProductionCMode& oldProductionControl = well_state.currentProductionGroupControl(group.name());
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
double production_rate = WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false);
double injection_rate = WellGroupHelpers::sumWellRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true);
// sum over all nodes
injection_rate = comm.sum(injection_rate);
production_rate = comm.sum(production_rate);
double sales_rate = production_rate - injection_rate;
double production_target = gconsale.sales_target + injection_rate;
// add import rate and substract consumption rate for group for gas
if (schedule()[reportStepIdx].gconsump().has(group.name())) {
const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState);
if (phase_usage_.phase_used[BlackoilPhases::Vapour]) {
sales_rate += gconsump.import_rate;
sales_rate -= gconsump.consumption_rate;
production_target -= gconsump.import_rate;
production_target += gconsump.consumption_rate;
}
}
if (sales_rate > gconsale.max_sales_rate) {
switch(gconsale.max_proc) {
case GConSale::MaxProcedure::NONE: {
if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) {
ss << "Group sales exceed maximum limit, but the action is NONE for " + group.name() + ". Nothing happens";
}
break;
}
case GConSale::MaxProcedure::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::CON_P: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::MAXR: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::END: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::RATE: {
well_state.setCurrentProductionGroupControl(group.name(), Group::ProductionCMode::GRAT);
ss << "Maximum GCONSALE limit violated for " << group.name() << ". The group is switched from ";
ss << Group::ProductionCMode2String(oldProductionControl) << " to " << Group::ProductionCMode2String(Group::ProductionCMode::GRAT);
ss << " and limited by the maximum sales rate after consumption and import are considered" ;
well_state.setCurrentGroupGratTargetFromSales(group.name(), production_target);
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
}
if (sales_rate < gconsale.min_sales_rate) {
const Group::ProductionCMode& currentProductionControl = well_state.currentProductionGroupControl(group.name());
if ( currentProductionControl == Group::ProductionCMode::GRAT ) {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value and is under GRAT control. \n";
ss << "The GRAT is increased to meet the sales minimum rate. \n";
well_state.setCurrentGroupGratTargetFromSales(group.name(), production_target);
//} else if () {//TODO add action for WGASPROD
//} else if () {//TODO add action for drilling queue
} else {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value but cannot increase the group production rate \n";
ss << "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n";
ss << "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken. \n ";
}
}
if (gconsale.sales_target < 0.0) {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger);
}
auto cc = Dune::MPIHelper::getCollectiveCommunication();
if (cc.size() > 1) {
ss << " on rank " << cc.rank();
}
if (!ss.str().empty())
deferred_logger.info(ss.str());
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, Opm::DeferredLogger& deferred_logger) {
auto& well_state = well_state_;
const Group::ProductionCMode oldControl = well_state.currentProductionGroupControl(group.name());
std::ostringstream ss;
switch(exceed_action) {
case Group::ExceedAction::NONE: {
if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) {
ss << "Group production exceed action is NONE for group " + group.name() + ". Nothing happens.";
}
break;
}
case Group::ExceedAction::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger);
break;
}
case Group::ExceedAction::CON_PLUS: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger);
break;
}
case Group::ExceedAction::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger);
break;
}
case Group::ExceedAction::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger);
break;
}
case Group::ExceedAction::RATE: {
if (oldControl != newControl) {
well_state.setCurrentProductionGroupControl(group.name(), newControl);
ss << "Switching production control mode for group "<< group.name()
<< " from " << Group::ProductionCMode2String(oldControl)
<< " to " << Group::ProductionCMode2String(newControl);
}
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
auto cc = Dune::MPIHelper::getCollectiveCommunication();
if (cc.size() > 1) {
ss << " on rank " << cc.rank();
}
if (!ss.str().empty())
deferred_logger.info(ss.str());
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& controlPhase, Opm::DeferredLogger& deferred_logger) {
auto& well_state = well_state_;
const Group::InjectionCMode oldControl = well_state.currentInjectionGroupControl(controlPhase, group.name());
std::ostringstream ss;
if (oldControl != newControl) {
const std::string from = Group::InjectionCMode2String(oldControl);
ss << "Switching injection control mode for group "<< group.name()
<< " from " << Group::InjectionCMode2String(oldControl)
<< " to " << Group::InjectionCMode2String(newControl);
auto cc = Dune::MPIHelper::getCollectiveCommunication();
if (cc.size() > 1) {
ss << " on rank " << cc.rank();
}
well_state.setCurrentInjectionGroupControl(controlPhase, group.name(), newControl);
}
if (!ss.str().empty())
deferred_logger.info(ss.str());
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateGroupHigherControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
{
const int reportStepIdx = ebosSimulator_.episodeIndex();
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
checkGroupHigherConstraints(fieldGroup, deferred_logger, switched_groups);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
checkGroupHigherConstraints(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups)
{
// Set up coefficients for RESV <-> surface rate conversion.
// Use the pvtRegionIdx from the top cell of the first well.
// TODO fix this!
// This is only used for converting RESV rates.
// What is the proper approach?
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const int fipnum = 0;
int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty()
? pvt_region_idx_[0]
: pvt_region_idx_[well_perf_data_[0][0].cell_index];
if ( comm.size() > 1)
{
// Just like in the sequential case the pvtregion is determined
// by the first cell of the first well. What is the first well
// is decided by the order in the Schedule using Well::seqIndex()
int firstWellIndex = well_perf_data_.empty() ?
std::numeric_limits<int>::max() : wells_ecl_[0].seqIndex();
auto regIndexPair = std::make_pair(pvtreg, firstWellIndex);
std::vector<decltype(regIndexPair)> pairs(comm.size());
comm.allgather(&regIndexPair, 1, pairs.data());
pvtreg = std::min_element(pairs.begin(), pairs.end(),
[](const auto& p1, const auto& p2){ return p1.second < p2.second;})
->first;
}
std::vector<double> resv_coeff(phase_usage_.num_phases, 0.0);
rateConverter_->calcCoeff(fipnum, pvtreg, resv_coeff);
const int reportStepIdx = ebosSimulator_.episodeIndex();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
std::vector<double> rates(phase_usage_.num_phases, 0.0);
const bool skip = switched_groups.count(group.name()) || group.name() == "FIELD";
if (!skip && group.isInjectionGroup()) {
// Obtain rates for group.
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellRates(
group, schedule(), well_state_, reportStepIdx, phasePos, /* isInjector */ true);
// Sum over all processes
rates[phasePos] = comm.sum(local_current_rate);
}
const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS };
for (Phase phase : all) {
// Check higher up only if under individual (not FLD) control.
const Group::InjectionCMode& currentControl = well_state_.currentInjectionGroupControl(phase, group.name());
if (currentControl != Group::InjectionCMode::FLD) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed = WellGroupHelpers::checkGroupConstraintsInj(
group.name(),
group.parent(),
parentGroup,
well_state_,
reportStepIdx,
guideRate_.get(),
rates.data(),
phase,
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState,
resv_coeff,
deferred_logger);
if (changed.first) {
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, deferred_logger);
}
}
}
}
if (!skip && group.isProductionGroup()) {
// Obtain rates for group.
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellRates(
group, schedule(), well_state_, reportStepIdx, phasePos, /* isInjector */ false);
// Sum over all processes
rates[phasePos] = -comm.sum(local_current_rate);
}
// Check higher up only if under individual (not FLD) control.
const Group::ProductionCMode& currentControl = well_state_.currentProductionGroupControl(group.name());
if (currentControl != Group::ProductionCMode::FLD) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed = WellGroupHelpers::checkGroupConstraintsProd(
group.name(),
group.parent(),
parentGroup,
well_state_,
reportStepIdx,
guideRate_.get(),
rates.data(),
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState,
resv_coeff,
deferred_logger);
if (changed.first) {
switched_groups.insert(group.name());
const auto exceed_action = group.productionControls(summaryState).exceed_action;
actionOnBrokenConstraints(group, exceed_action, Group::ProductionCMode::FLD, deferred_logger);
}
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
checkGroupHigherConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger, switched_groups);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateEclWell(int timeStepIdx, int well_index)
{
const auto& schedule = this->ebosSimulator_.vanguard().schedule();
const auto& wname = this->wells_ecl_[well_index].name();
this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx);
const auto& well = this->wells_ecl_[well_index];
auto& pd = this->well_perf_data_[well_index];
auto pdIter = pd.begin();
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
pdIter->connection_transmissibility_factor = conn.CF();
++pdIter;
}
}
this->well_state_.resetConnectionTransFactors(well_index, pd);
this->prod_index_calc_[well_index].reInit(well);
}
template<typename TypeTag>
double
BlackoilWellModel<TypeTag>::
wellPI(int well_index) const
{
const auto& pu = this->phase_usage_;
const auto np = this->numPhases();
const auto* pi = &this->well_state_.productivityIndex()[np*well_index + 0];
const auto preferred = this->wells_ecl_[well_index].getPreferredPhase();
switch (preferred) { // Should really have LIQUID = OIL + WATER here too...
case Phase::WATER:
return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]]
: 0.0;
case Phase::OIL:
return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]]
: 0.0;
case Phase::GAS:
return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]]
: 0.0;
default:
throw std::invalid_argument {
"Unsupported preferred phase " +
std::to_string(static_cast<int>(preferred))
};
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger)
{
if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == timeStepIdx)) {
// We've already run WELPI scaling for this report step. Most
// common for the very first report step. Don't redo WELPI scaling.
return;
}
auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool
{
return this->schedule()[timeStepIdx]
.wellgroup_events().hasEvent(this->wells_ecl_[well_index].name(),
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
};
auto rescaleWellPI =
[this, timeStepIdx](const int well_index,
const double newWellPI) -> void
{
{
const auto& wname = this->wells_ecl_[well_index].name();
auto& schedule = this->ebosSimulator_.vanguard().schedule(); // Mutable
schedule.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
}
this->updateEclWell(timeStepIdx, well_index);
};
// Minimal well setup to compute PI/II values
{
auto saved_previous_well_state = this->previous_well_state_;
this->previous_well_state_ = this->well_state_;
well_container_ = createWellContainer(timeStepIdx);
std::vector< Scalar > B_avg(numComponents(), Scalar() );
// we don't plan to iterate so just passing trivial B_avg
// for now
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
}
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
for (auto& well : well_container_) {
well->updatePerforatedCell(is_cell_perforated_);
}
this->calculateProductivityIndexValues(local_deferredLogger);
this->previous_well_state_ = std::move(saved_previous_well_state);
}
const auto nw = this->numLocalWells();
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
if (hasWellPIEvent(wellID)) {
const auto newWellPI = this->wellPI(wellID);
rescaleWellPI(wellID, newWellPI);
}
}
this->last_run_wellpi_ = timeStepIdx;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateWsolvent(groupTmp, schedule, reportStepIdx, wellState);
}
if (group.isProductionGroup())
return;
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(Phase::GAS, group.name());
if( currentGroupControl == Group::InjectionCMode::REIN ) {
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto& controls = group.injectionControls(Phase::GAS, summaryState);
const Group& groupRein = schedule.getGroup(controls.reinj_group, reportStepIdx);
double gasProductionRate = WellGroupHelpers::sumWellRates(groupRein, schedule, wellState, reportStepIdx, gasPos, /*isInjector*/false);
double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule, wellState, reportStepIdx, /*isInjector*/false);
const auto& comm = ebosSimulator_.vanguard().grid().comm();
solventProductionRate = comm.sum(solventProductionRate);
gasProductionRate = comm.sum(gasProductionRate);
double wsolvent = 0.0;
if (std::abs(gasProductionRate) > 1e-6)
wsolvent = solventProductionRate / gasProductionRate;
setWsolvent(group, schedule, reportStepIdx, wsolvent);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
setWsolvent(groupTmp, schedule, reportStepIdx, wsolvent);
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
auto well = getWell(wellName);
well->setWsolvent(wsolvent);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignWellGuideRates(data::Wells& wsrpt) const
{
for (const auto& well : this->wells_ecl_) {
auto xwPos = wsrpt.find(well.name());
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
continue;
}
xwPos->second.guide_rates = this->getGuideRateValues(well);
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignShutConnections(data::Wells& wsrpt) const
{
for (const auto& well : this->wells_ecl_) {
auto xwPos = wsrpt.find(well.name());
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
continue;
}
auto& xcon = xwPos->second.connections;
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
continue;
}
auto& xc = xcon.emplace_back();
xc.index = conn.global_index();
xc.pressure = xc.reservoir_rate = 0.0;
xc.effective_Kh = conn.Kh();
xc.trans_factor = conn.CF();
}
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignGroupValues(const int reportStepIdx,
const Schedule& sched,
std::map<std::string, data::GroupData>& gvalues) const
{
const auto groupGuideRates =
this->calculateAllGroupGuiderates(reportStepIdx, sched);
for (const auto& gname : sched.groupNames(reportStepIdx)) {
const auto& grup = sched.getGroup(gname, reportStepIdx);
auto& gdata = gvalues[gname];
this->assignGroupControl(grup, gdata);
this->assignGroupGuideRates(grup, groupGuideRates, gdata);
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignNodeValues(std::map<std::string, data::NodeData>& nodevalues) const
{
nodevalues.clear();
for (const auto& [node, pressure] : node_pressures_) {
nodevalues.emplace(node, data::NodeData{pressure});
}
}
template<typename TypeTag>
std::unordered_map<std::string, data::GroupGuideRates>
BlackoilWellModel<TypeTag>::
calculateAllGroupGuiderates(const int reportStepIdx, const Schedule& sched) const
{
auto gr = std::unordered_map<std::string, data::GroupGuideRates>{};
auto up = std::vector<std::string>{};
// Start at well level, accumulate contributions towards root of
// group tree (FIELD group).
for (const auto& wname : sched.wellNames(reportStepIdx)) {
if (! (this->well_state_.hasWellRates(wname) &&
this->guideRate_->has(wname)))
{
continue;
}
const auto& well = sched.getWell(wname, reportStepIdx);
const auto& parent = well.groupName();
if (parent == "FIELD") {
// Well parented directly to "FIELD". Inadvisable and
// unexpected, but nothing to do about that here. Just skip
// this guide rate contribution.
continue;
}
auto& grval = well.isInjector()
? gr[parent].injection
: gr[parent].production;
grval += this->getGuideRateValues(well);
up.push_back(parent);
}
// Propagate accumulated guide rates up towards root of group tree.
// Override accumulation if there is a GUIDERAT specification that
// applies to a group.
std::sort(up.begin(), up.end());
auto start = 0*up.size();
auto u = std::unique(up.begin(), up.end());
auto nu = std::distance(up.begin(), u);
while (nu > 0) {
const auto ntot = up.size();
for (auto gi = 0*nu; gi < nu; ++gi) {
const auto& gname = up[start + gi];
const auto& group = sched.getGroup(gname, reportStepIdx);
if (this->guideRate_->has(gname)) {
gr[gname].production = this->getGuideRateValues(group);
}
const auto parent = group.parent();
if (parent == "FIELD") { continue; }
gr[parent].injection += gr[gname].injection;
gr[parent].production += gr[gname].production;
up.push_back(parent);
}
start = ntot;
auto begin = up.begin() + ntot;
std::sort(begin, up.end());
u = std::unique(begin, up.end());
nu = std::distance(begin, u);
}
return gr;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignGroupControl(const Group& group, data::GroupData& gdata) const
{
const auto& gname = group.name();
const auto grup_type = group.getGroupType();
auto& cgc = gdata.currentControl;
cgc.currentProdConstraint =
::Opm::Group::ProductionCMode::NONE;
cgc.currentGasInjectionConstraint =
cgc.currentWaterInjectionConstraint =
::Opm::Group::InjectionCMode::NONE;
if (this->well_state_.hasProductionGroupControl(gname)) {
cgc.currentProdConstraint = this->well_state_
.currentProductionGroupControl(gname);
}
if ((grup_type == ::Opm::Group::GroupType::INJECTION) ||
(grup_type == ::Opm::Group::GroupType::MIXED))
{
if (this->well_state_.hasInjectionGroupControl(::Opm::Phase::WATER, gname)) {
cgc.currentWaterInjectionConstraint = this->well_state_
.currentInjectionGroupControl(::Opm::Phase::WATER, gname);
}
if (this->well_state_.hasInjectionGroupControl(::Opm::Phase::GAS, gname)) {
cgc.currentGasInjectionConstraint = this->well_state_
.currentInjectionGroupControl(::Opm::Phase::GAS, gname);
}
}
}
template <typename TypeTag>
data::GuideRateValue
BlackoilWellModel<TypeTag>::
getGuideRateValues(const Well& well) const
{
auto grval = data::GuideRateValue{};
assert (this->guideRate_ != nullptr);
const auto& wname = well.name();
if (! this->well_state_.hasWellRates(wname)) {
// No flow rates for 'wname' -- might be before well comes
// online (e.g., for the initial condition before simulation
// starts).
return grval;
}
if (! this->guideRate_->has(wname)) {
// No guiderates exist for 'wname'.
return grval;
}
const auto qs = WellGroupHelpers::
getRateVector(this->well_state_, this->phase_usage_, wname);
this->getGuideRateValues(qs, well.isInjector(), wname, grval);
return grval;
}
template <typename TypeTag>
data::GuideRateValue
BlackoilWellModel<TypeTag>::
getGuideRateValues(const Group& group) const
{
auto grval = data::GuideRateValue{};
assert (this->guideRate_ != nullptr);
const auto& gname = group.name();
if (! this->well_state_.hasProductionGroupRates(gname)) {
// No flow rates for 'gname' -- might be before group comes
// online (e.g., for the initial condition before simulation
// starts).
return grval;
}
if (! this->guideRate_->has(gname)) {
// No guiderates exist for 'gname'.
return grval;
}
const auto qs = WellGroupHelpers::
getProductionGroupRateVector(this->well_state_, this->phase_usage_, gname);
const auto is_inj = false; // This procedure only applies to G*PGR.
this->getGuideRateValues(qs, is_inj, gname, grval);
return grval;
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
getGuideRateValues(const GuideRate::RateVector& qs,
const bool is_inj,
const std::string& wgname,
data::GuideRateValue& grval) const
{
auto getGR = [this, &wgname, &qs](const GuideRateModel::Target t)
{
return this->guideRate_->get(wgname, t, qs);
};
// Note: GuideRate does currently (2020-07-20) not support Target::RES.
grval.set(data::GuideRateValue::Item::Gas,
getGR(GuideRateModel::Target::GAS));
grval.set(data::GuideRateValue::Item::Water,
getGR(GuideRateModel::Target::WAT));
if (! is_inj) {
// Producer. Extract "all" guiderate values.
grval.set(data::GuideRateValue::Item::Oil,
getGR(GuideRateModel::Target::OIL));
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const
{
auto& prod = gdata.guideRates.production; prod.clear();
auto& inj = gdata.guideRates.injection; inj .clear();
auto xgrPos = groupGuideRates.find(group.name());
if ((xgrPos == groupGuideRates.end()) ||
!this->guideRate_->has(group.name()))
{
// No guiderates defined for this group.
return;
}
const auto& xgr = xgrPos->second;
prod = xgr.production;
inj = xgr.injection;
}
} // namespace Opm