opm-simulators/opm/simulators/linalg/bda/rocm/rocsparseWellContributions.cpp
2024-06-04 06:19:28 +02:00

278 lines
10 KiB
C++

/*
Copyright 2023 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h> // CMake
// MultisegmentWellContribution includes the cuda runtime if found by CMake
// this leads to inclusion of both amd_hip_vector_types.h and vector_types.h
// which both define vector types like uchar2, short3 and double4.
// Restore the value (if defined) afterwards.
#ifdef HAVE_CUDA
#define HIP_HAVE_CUDA_DEFINED HAVE_CUDA
#endif
#undef HAVE_CUDA
#include <opm/simulators/linalg/bda/rocm/rocsparseWellContributions.hpp>
#ifdef HIP_HAVE_CUDA_DEFINED
#define HAVE_CUDA HIP_HAVE_CUDA_DEFINED
#undef HIP_HAVE_CUDA_DEFINED
#endif
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/MultisegmentWellContribution.hpp>
#include <hip/hip_runtime.h>
#define HIP_CHECK(stat) \
{ \
if(stat != hipSuccess) \
{ \
OPM_THROW(std::logic_error, "HIP error"); \
} \
}
namespace Opm
{
#ifdef __HIP__
/// HIP kernel to apply the standard wellcontributions
template<class Scalar>
__global__ void stdwell_apply(const Scalar* Cnnzs,
const Scalar* Dnnzs,
const Scalar* Bnnzs,
const unsigned* Ccols,
const unsigned* Bcols,
const Scalar* x,
Scalar* y,
const unsigned dim,
const unsigned dim_wells,
const unsigned *val_pointers)
{
unsigned wgId = blockIdx.x;
unsigned wiId = threadIdx.x;
unsigned valSize = val_pointers[wgId + 1] - val_pointers[wgId];
unsigned valsPerBlock = dim*dim_wells;
unsigned numActiveWorkItems = (blockDim.x/valsPerBlock)*valsPerBlock;
unsigned numBlocksPerWarp = blockDim.x/valsPerBlock;
unsigned c = wiId % dim;
unsigned r = (wiId/dim) % dim_wells;
Scalar temp;
extern __shared__ Scalar localSum[];
Scalar* z1 = localSum + gridDim.x;
Scalar* z2 = z1 + dim_wells;
localSum[wiId] = 0;
if (wiId < numActiveWorkItems) {
unsigned b = wiId/valsPerBlock + val_pointers[wgId];
while (b < valSize + val_pointers[wgId]) {
int colIdx = Bcols[b];
localSum[wiId] += Bnnzs[b*dim*dim_wells + r*dim + c]*x[colIdx*dim + c];
b += numBlocksPerWarp;
}
// merge all blocks in this workgroup into 1 block
// if numBlocksPerWarp >= 3, should use loop
// block 1: block 2:
// 0 1 2 12 13 14
// 3 4 5 15 16 17
// 6 7 8 18 19 20
// 9 10 11 21 22 23
// workitem i will hold the sum of workitems i and i + valsPerBlock
if (wiId < valsPerBlock){
for (unsigned i = 1; i < numBlocksPerWarp; ++i) {
localSum[wiId] += localSum[wiId + i*valsPerBlock];
}
}
if (c == 0 && wiId < valsPerBlock){
for (unsigned i = dim - 1; i > 0; --i) {
localSum[wiId] += localSum[wiId + i];
}
z1[r] = localSum[wiId];
}
}
__syncthreads();
if(wiId < dim_wells){
temp = 0.0;
for (unsigned i = 0; i < dim_wells; ++i) {
temp += Dnnzs[wgId*dim_wells*dim_wells + wiId*dim_wells + i]*z1[i];
}
z2[wiId] = temp;
}
__syncthreads();
if (wiId < dim*valSize){
temp = 0.0;
unsigned bb = wiId/dim + val_pointers[wgId];
for (unsigned j = 0; j < dim_wells; ++j) {
temp += Cnnzs[bb*dim*dim_wells + j*dim + c]*z2[j];
}
int colIdx = Ccols[bb];
y[colIdx*dim + c] -= temp;
}
}
#endif
template<class Scalar>
void WellContributionsRocsparse<Scalar>::
apply_stdwells([[maybe_unused]] Scalar* d_x,
[[maybe_unused]] Scalar* d_y)
{
#ifdef __HIP__
unsigned gridDim = this->num_std_wells;
unsigned blockDim = 64;
unsigned shared_mem_size = (blockDim + 2 * this->dim_wells) * sizeof(Scalar); // shared memory for localSum, z1 and z2
// dim3(N) will create a vector {N, 1, 1}
stdwell_apply<<<dim3(gridDim), dim3(blockDim), shared_mem_size, stream>>>(d_Cnnzs_hip,
d_Dnnzs_hip,
d_Bnnzs_hip,
d_Ccols_hip,
d_Bcols_hip,
d_x,
d_y,
this->dim,
this->dim_wells,
d_val_pointers_hip
);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error separate wellcontributions for rocsparse only supported when compiling with hipcc");
#endif
}
template<class Scalar>
void WellContributionsRocsparse<Scalar>::
apply_mswells(Scalar* d_x, Scalar* d_y)
{
if (h_x.empty()) {
h_x.resize(this->N);
h_y.resize(this->N);
}
HIP_CHECK(hipMemcpyAsync(h_x.data(), d_x, sizeof(Scalar) * this->N, hipMemcpyDeviceToHost, stream));
HIP_CHECK(hipMemcpyAsync(h_y.data(), d_y, sizeof(Scalar) * this->N, hipMemcpyDeviceToHost, stream));
HIP_CHECK(hipStreamSynchronize(stream));
// actually apply MultisegmentWells
for (auto& well : this->multisegments) {
well->apply(h_x.data(), h_y.data());
}
// copy vector y from CPU to GPU
HIP_CHECK(hipMemcpyAsync(d_y, h_y.data(), sizeof(Scalar) * this->N, hipMemcpyHostToDevice, stream));
HIP_CHECK(hipStreamSynchronize(stream));
}
template<class Scalar>
void WellContributionsRocsparse<Scalar>::
apply(Scalar* d_x, Scalar* d_y)
{
if (this->num_std_wells > 0) {
apply_stdwells(d_x, d_y);
}
if (this->num_ms_wells > 0) {
apply_mswells(d_x, d_y);
}
}
template<class Scalar>
void WellContributionsRocsparse<Scalar>::setStream(hipStream_t stream_)
{
stream = stream_;
}
template<class Scalar>
void WellContributionsRocsparse<Scalar>::
APIaddMatrix(MatrixType type,
int* colIndices,
Scalar* values,
unsigned int val_size)
{
if (!this->allocated) {
OPM_THROW(std::logic_error, "Error cannot add wellcontribution before allocating memory in WellContributions");
}
switch (type) {
case MatrixType::C:
HIP_CHECK(hipMemcpyAsync(d_Cnnzs_hip + this->num_blocks_so_far * this->dim * this->dim_wells,
values, sizeof(d_Cnnzs_hip) * val_size * this->dim * this->dim_wells,
hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(d_Ccols_hip + this->num_blocks_so_far, colIndices,
sizeof(d_Ccols_hip) * val_size,
hipMemcpyHostToDevice, stream));
break;
case MatrixType::D:
HIP_CHECK(hipMemcpyAsync(d_Dnnzs_hip + this->num_std_wells_so_far * this->dim_wells * this->dim_wells,
values, sizeof(d_Dnnzs_hip) * this->dim_wells * this->dim_wells,
hipMemcpyHostToDevice, stream));
break;
case MatrixType::B:
HIP_CHECK(hipMemcpyAsync(d_Bnnzs_hip + this->num_blocks_so_far * this->dim * this->dim_wells,
values, sizeof(d_Bnnzs_hip) * val_size * this->dim * this->dim_wells,
hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(d_Bcols_hip + this->num_blocks_so_far, colIndices,
sizeof(d_Bcols_hip) * val_size,
hipMemcpyHostToDevice, stream));
this->val_pointers[this->num_std_wells_so_far] = this->num_blocks_so_far;
if (this->num_std_wells_so_far == this->num_std_wells - 1) {
this->val_pointers[this->num_std_wells] = this->num_blocks;
HIP_CHECK(hipMemcpyAsync(d_val_pointers_hip, this->val_pointers.data(),
sizeof(d_val_pointers_hip) * (this->num_std_wells + 1),
hipMemcpyHostToDevice, stream));
}
break;
default:
OPM_THROW(std::logic_error, "Error unsupported matrix ID for WellContributionsRocsparse::addMatrix()");
}
HIP_CHECK(hipStreamSynchronize(stream));
}
template<class Scalar>
void WellContributionsRocsparse<Scalar>::APIalloc()
{
HIP_CHECK(hipMalloc((void**)&d_Cnnzs_hip,
sizeof(d_Cnnzs_hip) * this->num_blocks * this->dim * this->dim_wells));
HIP_CHECK(hipMalloc((void**)&d_Dnnzs_hip,
sizeof(d_Dnnzs_hip) * this->num_std_wells * this->dim_wells * this->dim_wells));
HIP_CHECK(hipMalloc((void**)&d_Bnnzs_hip,
sizeof(d_Bnnzs_hip) * this->num_blocks * this->dim * this->dim_wells));
HIP_CHECK(hipMalloc((void**)&d_Ccols_hip, sizeof(d_Ccols_hip) * this->num_blocks));
HIP_CHECK(hipMalloc((void**)&d_Bcols_hip, sizeof(d_Bcols_hip) * this->num_blocks));
HIP_CHECK(hipMalloc((void**)&d_val_pointers_hip,
sizeof(d_val_pointers_hip) * (this->num_std_wells + 1)));
}
template class WellContributionsRocsparse<double>;
} // namespace Opm