mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
512 lines
17 KiB
C++
512 lines
17 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2012 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <opm/core/pressure/IncompTpfa.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/GridManager.hpp>
|
|
#include <opm/core/utility/writeVtkData.hpp>
|
|
#include <opm/core/utility/linearInterpolation.hpp>
|
|
#include <opm/core/utility/miscUtilities.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/StopWatch.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
|
|
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
|
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
|
|
|
|
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
|
|
// #include <opm/core/linalg/LinearSolverIstl.hpp>
|
|
|
|
#include <opm/polymer/TransportModelPolymer.hpp>
|
|
#include <opm/polymer/PolymerProperties.hpp>
|
|
#include <opm/polymer/polymerUtilities.hpp>
|
|
|
|
#include <boost/filesystem/convenience.hpp>
|
|
#include <boost/scoped_ptr.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
|
|
#include <algorithm>
|
|
#include <tr1/array>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <fstream>
|
|
#include <iterator>
|
|
#include <vector>
|
|
#include <numeric>
|
|
|
|
|
|
|
|
class AdHocProps : public Opm::IncompPropertiesBasic
|
|
{
|
|
public:
|
|
AdHocProps(const Opm::parameter::ParameterGroup& param, int dim, int num_cells)
|
|
: Opm::IncompPropertiesBasic(param, dim, num_cells)
|
|
{
|
|
ASSERT(numPhases() == 2);
|
|
sw_.resize(3);
|
|
sw_[0] = 0.2;
|
|
sw_[1] = 0.7;
|
|
sw_[2] = 1.0;
|
|
krw_.resize(3);
|
|
krw_[0] = 0.0;
|
|
krw_[1] = 0.7;
|
|
krw_[2] = 1.0;
|
|
so_.resize(2);
|
|
so_[0] = 0.3;
|
|
so_[1] = 0.8;
|
|
kro_.resize(2);
|
|
kro_[0] = 0.0;
|
|
kro_[1] = 1.0;
|
|
}
|
|
|
|
virtual void relperm(const int n,
|
|
const double* s,
|
|
const int* /*cells*/,
|
|
double* kr,
|
|
double* dkrds) const
|
|
{
|
|
// ASSERT(dkrds == 0);
|
|
// We assume two phases flow
|
|
for (int i = 0; i < n; ++i) {
|
|
kr[2*i] = krw(s[2*i]);
|
|
kr[2*i+1] = kro(s[2*i+1]);
|
|
if (dkrds != 0) {
|
|
dkrds[2*i] = krw_dsw(s[2*i]);
|
|
dkrds[2*i+3] = kro_dso(s[2*i+1]);
|
|
dkrds[2*i+1] = -dkrds[2*i+3];
|
|
dkrds[2*i+2] = -dkrds[2*i];
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void satRange(const int n,
|
|
const int* /*cells*/,
|
|
double* smin,
|
|
double* smax) const
|
|
{
|
|
const int np = 2;
|
|
for (int i = 0; i < n; ++i) {
|
|
smin[np*i + 0] = sw_[0];
|
|
smax[np*i + 0] = sw_.back();
|
|
smin[np*i + 1] = 1.0 - sw_[0];
|
|
smax[np*i + 1] = 1.0 - sw_.back();
|
|
}
|
|
}
|
|
|
|
private:
|
|
double krw(double s) const
|
|
{
|
|
return Opm::linearInterpolation(sw_, krw_, s);
|
|
}
|
|
|
|
double krw_dsw(double s) const
|
|
{
|
|
return Opm::linearInterpolationDerivative(sw_, krw_, s);
|
|
}
|
|
|
|
|
|
double kro(double s) const
|
|
{
|
|
return Opm::linearInterpolation(so_, kro_, s);
|
|
}
|
|
|
|
double kro_dso(double s) const
|
|
{
|
|
return Opm::linearInterpolationDerivative(so_, kro_, s);
|
|
}
|
|
|
|
std::vector<double> sw_;
|
|
std::vector<double> krw_;
|
|
std::vector<double> so_;
|
|
std::vector<double> kro_;
|
|
};
|
|
|
|
|
|
class ReservoirState
|
|
{
|
|
public:
|
|
ReservoirState(const UnstructuredGrid* g, const double init_sat = 0.0)
|
|
: press_ (g->number_of_cells, 0.0),
|
|
fpress_(g->number_of_faces, 0.0),
|
|
flux_ (g->number_of_faces, 0.0),
|
|
sat_ (2 * g->number_of_cells, 0.0),
|
|
concentration_(g->number_of_cells, 0.0),
|
|
cmax_(g->number_of_cells, 0.0)
|
|
{
|
|
for (int cell = 0; cell < g->number_of_cells; ++cell) {
|
|
sat_[2*cell] = init_sat;
|
|
sat_[2*cell + 1] = 1.0 - init_sat;
|
|
}
|
|
}
|
|
|
|
void setToMinimumWaterSat(const Opm::IncompPropertiesInterface& props)
|
|
{
|
|
const int n = props.numCells();
|
|
std::vector<int> cells(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
cells[i] = i;
|
|
}
|
|
std::vector<double> smin(2*n);
|
|
std::vector<double> smax(2*n);
|
|
props.satRange(n, &cells[0], &smin[0], &smax[0]);
|
|
for (int cell = 0; cell < n; ++cell) {
|
|
sat_[2*cell] = smin[2*cell];
|
|
sat_[2*cell + 1] = 1.0 - smin[2*cell];
|
|
}
|
|
}
|
|
|
|
int numPhases() const { return sat_.size()/press_.size(); }
|
|
|
|
std::vector<double>& pressure () { return press_ ; }
|
|
std::vector<double>& facepressure() { return fpress_; }
|
|
std::vector<double>& faceflux () { return flux_ ; }
|
|
std::vector<double>& saturation () { return sat_ ; }
|
|
std::vector<double>& concentration() { return concentration_; }
|
|
std::vector<double>& cmax() { return cmax_; }
|
|
|
|
const std::vector<double>& pressure () const { return press_ ; }
|
|
const std::vector<double>& facepressure() const { return fpress_; }
|
|
const std::vector<double>& faceflux () const { return flux_ ; }
|
|
const std::vector<double>& saturation () const { return sat_ ; }
|
|
const std::vector<double>& concentration() const { return concentration_; }
|
|
const std::vector<double>& cmax() const { return cmax_; }
|
|
|
|
private:
|
|
std::vector<double> press_ ;
|
|
std::vector<double> fpress_;
|
|
std::vector<double> flux_ ;
|
|
std::vector<double> sat_ ;
|
|
std::vector<double> concentration_;
|
|
std::vector<double> cmax_;
|
|
};
|
|
|
|
|
|
|
|
class PolymerInflow
|
|
{
|
|
public:
|
|
PolymerInflow(const double starttime,
|
|
const double endtime,
|
|
const double amount)
|
|
: stime_(starttime), etime_(endtime), amount_(amount)
|
|
{
|
|
}
|
|
double operator()(double time)
|
|
{
|
|
if (time >= stime_ && time < etime_) {
|
|
return amount_;
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
private:
|
|
double stime_;
|
|
double etime_;
|
|
double amount_;
|
|
};
|
|
|
|
|
|
|
|
|
|
template <class State>
|
|
void outputState(const UnstructuredGrid* grid,
|
|
const State& state,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write data in VTK format.
|
|
std::ostringstream vtkfilename;
|
|
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
|
std::ofstream vtkfile(vtkfilename.str().c_str());
|
|
if (!vtkfile) {
|
|
THROW("Failed to open " << vtkfilename.str());
|
|
}
|
|
Opm::DataMap dm;
|
|
dm["saturation"] = &state.saturation();
|
|
dm["pressure"] = &state.pressure();
|
|
dm["concentration"] = &state.concentration();
|
|
Opm::writeVtkData(grid, dm, vtkfile);
|
|
|
|
// Write data (not grid) in Matlab format
|
|
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
|
std::ostringstream fname;
|
|
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
|
|
std::ofstream file(fname.str().c_str());
|
|
if (!file) {
|
|
THROW("Failed to open " << fname.str());
|
|
}
|
|
const std::vector<double>& d = *(it->second);
|
|
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------- Main program -----------------
|
|
int
|
|
main(int argc, char** argv)
|
|
{
|
|
std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n";
|
|
Opm::parameter::ParameterGroup param(argc, argv, false);
|
|
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
|
|
|
// Reading various control parameters.
|
|
const int num_psteps = param.getDefault("num_psteps", 1);
|
|
const double stepsize_days = param.getDefault("stepsize_days", 1.0);
|
|
const double stepsize = Opm::unit::convert::from(stepsize_days, Opm::unit::day);
|
|
const bool output = param.getDefault("output", true);
|
|
std::string output_dir;
|
|
if (output) {
|
|
output_dir = param.getDefault("output_dir", std::string("output"));
|
|
// Ensure that output dir exists
|
|
boost::filesystem::path fpath(output_dir);
|
|
create_directories(fpath);
|
|
}
|
|
|
|
// If we have a "deck_filename", grid and props will be read from that.
|
|
bool use_deck = param.has("deck_filename");
|
|
boost::scoped_ptr<Opm::GridManager> grid;
|
|
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
|
|
Opm::PolymerProperties polydata;
|
|
if (use_deck) {
|
|
std::string deck_filename = param.get<std::string>("deck_filename");
|
|
Opm::EclipseGridParser deck(deck_filename);
|
|
polydata.readFromDeck(deck);
|
|
// Grid init
|
|
// grid.reset(new Opm::GridManager(deck));
|
|
const int nx = param.getDefault("nx", 100);
|
|
const int ny = param.getDefault("ny", 100);
|
|
const int nz = param.getDefault("nz", 1);
|
|
const double dx = param.getDefault("dx", 1.0);
|
|
const double dy = param.getDefault("dy", 1.0);
|
|
const double dz = param.getDefault("dz", 1.0);
|
|
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
|
// Rock and fluid init
|
|
const int* gc = grid->c_grid()->global_cell;
|
|
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
|
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
|
|
// props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
|
} else {
|
|
// Grid init.
|
|
const int nx = param.getDefault("nx", 100);
|
|
const int ny = param.getDefault("ny", 100);
|
|
const int nz = param.getDefault("nz", 1);
|
|
const double dx = param.getDefault("dx", 1.0);
|
|
const double dy = param.getDefault("dy", 1.0);
|
|
const double dz = param.getDefault("dz", 1.0);
|
|
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
|
// Rock and fluid init.
|
|
// props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
|
props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
|
// Setting polydata defaults to mimic a simple example case.
|
|
|
|
double c_max = param.getDefault("c_max_limit", 5.0);
|
|
double mix_param = param.getDefault("mix_param", 1.0);
|
|
double rock_density = param.getDefault("rock_density", 1000.0);
|
|
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
|
|
std::vector<double> c_vals_visc(2, -1e100);
|
|
c_vals_visc[0] = 0.0;
|
|
c_vals_visc[1] = 7.0;
|
|
std::vector<double> visc_mult_vals(2, -1e100);
|
|
visc_mult_vals[0] = 1.0;
|
|
// polydata.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
|
|
visc_mult_vals[1] = 20.0;
|
|
std::vector<double> c_vals_ads(3, -1e100);
|
|
c_vals_ads[0] = 0.0;
|
|
c_vals_ads[1] = 2.0;
|
|
c_vals_ads[2] = 8.0;
|
|
std::vector<double> ads_vals(3, -1e100);
|
|
ads_vals[0] = 0.0;
|
|
// polydata.ads_vals[1] = param.getDefault("c_max_ads", 0.0025);
|
|
ads_vals[1] = 0.0015;
|
|
ads_vals[2] = 0.0025;
|
|
polydata.set(c_max, mix_param, rock_density, dead_pore_vol, c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
|
|
}
|
|
|
|
|
|
|
|
double poly_start = param.getDefault("poly_start_days", 300.0)*Opm::unit::day;
|
|
double poly_end = param.getDefault("poly_end_days", 800.0)*Opm::unit::day;
|
|
double poly_amount = param.getDefault("poly_amount", 5.0);
|
|
PolymerInflow poly_inflow(poly_start, poly_end, poly_amount);
|
|
|
|
// Extra rock init.
|
|
std::vector<double> porevol;
|
|
computePorevolume(*grid->c_grid(), *props, porevol);
|
|
double tot_porevol = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
|
|
|
// Gravity init.
|
|
double gravity[3] = { 0.0 };
|
|
double g = param.getDefault("gravity", 0.0);
|
|
bool use_gravity = g != 0.0;
|
|
if (use_gravity) {
|
|
gravity[grid->c_grid()->dimensions - 1] = g;
|
|
if (props->density()[0] == props->density()[1]) {
|
|
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
|
|
}
|
|
}
|
|
|
|
// Solvers init.
|
|
Opm::LinearSolverUmfpack linsolver;
|
|
// Opm::LinearSolverIstl linsolver(param);
|
|
const double *grav = use_gravity ? &gravity[0] : 0;
|
|
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver);
|
|
|
|
Opm::TransportModelPolymer::SingleCellMethod method;
|
|
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
|
|
if (method_string == "Bracketing") {
|
|
method = Opm::TransportModelPolymer::Bracketing;
|
|
} else if (method_string == "Newton") {
|
|
method = Opm::TransportModelPolymer::Newton;
|
|
} else {
|
|
THROW("Unknown method: " << method_string);
|
|
}
|
|
const double nltol = param.getDefault("nl_tolerance", 1e-9);
|
|
const int maxit = param.getDefault("nl_maxiter", 30);
|
|
Opm::TransportModelPolymer tmodel(*grid->c_grid(), props->porosity(), &porevol[0], *props, polydata,
|
|
method, nltol, maxit);
|
|
|
|
// State-related and source-related variables init.
|
|
int num_cells = grid->c_grid()->number_of_cells;
|
|
std::vector<double> totmob;
|
|
std::vector<double> omega; // Empty dummy unless/until we include gravity here.
|
|
double init_sat = param.getDefault("init_sat", 0.0);
|
|
ReservoirState state(grid->c_grid(), init_sat);
|
|
if (!param.has("init_sat")) {
|
|
state.setToMinimumWaterSat(*props);
|
|
}
|
|
// We need a separate reorder_sat, because the reorder
|
|
// code expects a scalar sw, not both sw and so.
|
|
std::vector<double> reorder_sat(num_cells);
|
|
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
|
|
if (param.has("injection_rate_per_day")) {
|
|
flow_per_sec = param.get<double>("injection_rate_per_day")/Opm::unit::day;
|
|
}
|
|
std::vector<double> src(num_cells, 0.0);
|
|
src[0] = flow_per_sec;
|
|
src[num_cells - 1] = -flow_per_sec;
|
|
std::vector<double> reorder_src = src;
|
|
|
|
// Control init.
|
|
double current_time = 0.0;
|
|
double total_time = stepsize*num_psteps;
|
|
|
|
// The allcells vector is used in calls to computeTotalMobility()
|
|
// and computeTotalMobilityOmega().
|
|
std::vector<int> allcells(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
allcells[cell] = cell;
|
|
}
|
|
|
|
// Warn if any parameters are unused.
|
|
if (param.anyUnused()) {
|
|
std::cout << "-------------------- Unused parameters: --------------------\n";
|
|
param.displayUsage();
|
|
std::cout << "----------------------------------------------------------------" << std::endl;
|
|
}
|
|
|
|
// Write parameters used for later reference.
|
|
if (output) {
|
|
param.writeParam(output_dir + "/spu_2p.param");
|
|
}
|
|
|
|
// Main simulation loop.
|
|
Opm::time::StopWatch pressure_timer;
|
|
double ptime = 0.0;
|
|
Opm::time::StopWatch transport_timer;
|
|
double ttime = 0.0;
|
|
Opm::time::StopWatch total_timer;
|
|
total_timer.start();
|
|
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
|
|
for (int pstep = 0; pstep < num_psteps; ++pstep) {
|
|
std::cout << "\n\n--------------- Simulation step number " << pstep
|
|
<< " ---------------"
|
|
<< "\n Current time (days) " << Opm::unit::convert::to(current_time, Opm::unit::day)
|
|
<< "\n Current stepsize (days) " << Opm::unit::convert::to(stepsize, Opm::unit::day)
|
|
<< "\n Total time (days) " << Opm::unit::convert::to(total_time, Opm::unit::day)
|
|
<< "\n" << std::endl;
|
|
|
|
if (output) {
|
|
outputState(grid->c_grid(), state, pstep, output_dir);
|
|
}
|
|
|
|
if (use_gravity) {
|
|
computeTotalMobilityOmega(*props, polydata, allcells, state.saturation(), state.concentration(),
|
|
totmob, omega);
|
|
} else {
|
|
computeTotalMobility(*props, polydata, allcells, state.saturation(), state.concentration(),
|
|
totmob);
|
|
}
|
|
pressure_timer.start();
|
|
psolver.solve(totmob, omega, src, state.pressure(), state.faceflux());
|
|
pressure_timer.stop();
|
|
double pt = pressure_timer.secsSinceStart();
|
|
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
|
ptime += pt;
|
|
|
|
const double inflowc0 = poly_inflow(current_time + 1e-5*stepsize);
|
|
const double inflowc1 = poly_inflow(current_time + (1.0 - 1e-5)*stepsize);
|
|
if (inflowc0 != inflowc1) {
|
|
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
|
|
}
|
|
const double inflow_c = inflowc0;
|
|
Opm::toWaterSat(state.saturation(), reorder_sat);
|
|
// We must treat reorder_src here,
|
|
// if we are to handle anything but simple water
|
|
// injection, since it is expected to be
|
|
// equal to total outflow (if negative)
|
|
// and water inflow (if positive).
|
|
// Also, for anything but noflow boundaries,
|
|
// boundary flows must be accumulated into
|
|
// source term following the same convention.
|
|
transport_timer.start();
|
|
tmodel.solve(&state.faceflux()[0], &reorder_src[0], stepsize, inflow_c,
|
|
&reorder_sat[0], &state.concentration()[0], &state.cmax()[0]);
|
|
transport_timer.stop();
|
|
double tt = transport_timer.secsSinceStart();
|
|
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
|
ttime += tt;
|
|
Opm::toBothSat(reorder_sat, state.saturation());
|
|
|
|
current_time += stepsize;
|
|
}
|
|
total_timer.stop();
|
|
|
|
std::cout << "\n\n================ End of simulation ===============\n"
|
|
<< "Total time taken: " << total_timer.secsSinceStart()
|
|
<< "\n Pressure time: " << ptime
|
|
<< "\n Transport time: " << ttime << std::endl;
|
|
|
|
if (output) {
|
|
outputState(grid->c_grid(), state, num_psteps, output_dir);
|
|
}
|
|
}
|