opm-simulators/opm/simulators/wells/BlackoilWellModelGeneric.cpp
Bård Skaflestad 767b5ca58b Switch Guide Rate Accumulation to Post-Order Traversal
This guarantees, under the assumption that the group tree does not
have cycles, that we do not accumulate group-level guide rate values
until all of its children are fully evaluated.  We use an iterative
depth-first post-order tree traversal with an explicit stack instead
of a recursive implementation.

The previous implementation, which tried to do the same kind of
child-to-parent accumulation, might visit a parent group multiple
times which in turn might lead to losing updates.  This is a more
formalised approach to the value accumulation than was originally
employed.
2021-10-29 21:21:49 +02:00

2073 lines
78 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>
#include <opm/output/data/GuideRateValue.hpp>
#include <opm/output/data/Groups.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRateConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRate.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/GasLiftStage2.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <algorithm>
#include <cassert>
#include <stack>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <fmt/format.h>
namespace {
Opm::data::GuideRateValue::Item
guideRateRestartItem(const Opm::GuideRateModel::Target target)
{
using Item = Opm::data::GuideRateValue::Item;
using Target = Opm::GuideRateModel::Target;
static const auto items = std::unordered_map<Target, Item> {
{ Target::OIL, Item::Oil },
{ Target::GAS, Item::Gas },
{ Target::WAT, Item::Water },
{ Target::RES, Item::ResV },
};
auto i = items.find(target);
return (i == items.end()) ? Item::NumItems : i->second;
}
Opm::GuideRate::GuideRateValue
makeGuideRateValue(const Opm::data::GuideRateValue& restart,
const Opm::GuideRateModel::Target target)
{
const auto item = guideRateRestartItem(target);
if (! restart.has(item)) {
return {};
}
return { 0.0, restart.get(item), target };
}
} // Anonymous
namespace Opm {
BlackoilWellModelGeneric::
BlackoilWellModelGeneric(Schedule& schedule,
const SummaryState& summaryState,
const EclipseState& eclState,
const PhaseUsage& phase_usage,
const Parallel::Communication& comm)
: schedule_(schedule)
, summaryState_(summaryState)
, eclState_(eclState)
, comm_(comm)
, phase_usage_(phase_usage)
, guideRate_(schedule)
, active_wgstate_(phase_usage)
, last_valid_wgstate_(phase_usage)
, nupcol_wgstate_(phase_usage)
{
const auto numProcs = comm_.size();
this->not_on_process_ = [this, numProcs](const Well& well) {
if (numProcs == decltype(numProcs){1})
return false;
// Recall: false indicates NOT active!
const auto value = std::make_pair(well.name(), true);
auto candidate = std::lower_bound(this->parallel_well_info_.begin(),
this->parallel_well_info_.end(),
value);
return (candidate == this->parallel_well_info_.end())
|| (*candidate != value);
};
}
int
BlackoilWellModelGeneric::
numLocalWells() const
{
return wells_ecl_.size();
}
int
BlackoilWellModelGeneric::
numPhases() const
{
return phase_usage_.num_phases;
}
bool
BlackoilWellModelGeneric::
hasWell(const std::string& wname)
{
return std::any_of(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&wname](const Well& well)
{
return well.name() == wname;
});
}
bool
BlackoilWellModelGeneric::
wellsActive() const
{
return wells_active_;
}
bool
BlackoilWellModelGeneric::
localWellsActive() const
{
return numLocalWells() > 0;
}
bool
BlackoilWellModelGeneric::
anyMSWellOpenLocal() const
{
for (const auto& well : wells_ecl_) {
if (well.isMultiSegment()) {
return true;
}
}
return false;
}
const Well&
BlackoilWellModelGeneric::
getWellEcl(const std::string& well_name) const
{
// finding the iterator of the well in wells_ecl
auto well_ecl = std::find_if(wells_ecl_.begin(),
wells_ecl_.end(),
[&well_name](const Well& elem)->bool {
return elem.name() == well_name;
});
assert(well_ecl != wells_ecl_.end());
return *well_ecl;
}
void
BlackoilWellModelGeneric::
loadRestartConnectionData(const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
const std::vector<PerforationData>& old_perf_data,
SingleWellState& ws)
{
auto& perf_data = ws.perf_data;
auto perf_pressure = perf_data.pressure.begin();
auto perf_rates = perf_data.rates.begin();
auto perf_phase_rates = perf_data.phase_rates.begin();
for (const auto& pd : old_perf_data) {
const auto& rst_connection = rst_well.connections[pd.ecl_index];
*perf_pressure = rst_connection.pressure; ++perf_pressure;
*perf_rates = rst_connection.reservoir_rate; ++perf_rates;
for (const auto& phase : phs) {
*perf_phase_rates = rst_connection.rates.get(phase);
++perf_phase_rates;
}
}
}
void
BlackoilWellModelGeneric::
loadRestartSegmentData(const std::string& well_name,
const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
SingleWellState& ws)
{
const auto& segment_set = this->getWellEcl(well_name).getSegments();
const auto& rst_segments = rst_well.segments;
// \Note: Eventually we need to handle the situations that some segments are shut
assert(0u + segment_set.size() == rst_segments.size());
const auto np = phs.size();
const auto pres_idx = data::SegmentPressures::Value::Pressure;
auto& segments = ws.segments;
auto& segment_pressure = segments.pressure;
auto& segment_rates = segments.rates;
for (const auto& [segNum, rst_segment] : rst_segments) {
const int segment_index = segment_set.segmentNumberToIndex(segNum);
// Recovering segment rates and pressure from the restart values
segment_pressure[segment_index] = rst_segment.pressures[pres_idx];
const auto& rst_segment_rates = rst_segment.rates;
for (auto p = 0*np; p < np; ++p) {
segment_rates[segment_index*np + p] = rst_segment_rates.get(phs[p]);
}
}
}
void
BlackoilWellModelGeneric::
loadRestartWellData(const std::string& well_name,
const bool handle_ms_well,
const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
const std::vector<PerforationData>& old_perf_data,
SingleWellState& ws)
{
const auto np = phs.size();
ws.bhp = rst_well.bhp;
ws.thp = rst_well.thp;
ws.temperature = rst_well.temperature;
if (rst_well.current_control.isProducer) {
ws.production_cmode = rst_well.current_control.prod;
}
else {
ws.injection_cmode = rst_well.current_control.inj;
}
for (auto i = 0*np; i < np; ++i) {
assert( rst_well.rates.has( phs[ i ] ) );
ws.surface_rates[i] = rst_well.rates.get(phs[i]);
}
this->loadRestartConnectionData(phs, rst_well, old_perf_data, ws);
if (handle_ms_well && !rst_well.segments.empty()) {
this->loadRestartSegmentData(well_name, phs, rst_well, ws);
}
}
void
BlackoilWellModelGeneric::
loadRestartGroupData(const std::string& group,
const data::GroupData& value)
{
using GPMode = Group::ProductionCMode;
using GIMode = Group::InjectionCMode;
const auto cpc = value.currentControl.currentProdConstraint;
const auto cgi = value.currentControl.currentGasInjectionConstraint;
const auto cwi = value.currentControl.currentWaterInjectionConstraint;
auto& grpState = this->groupState();
if (cpc != GPMode::NONE) {
grpState.production_control(group, cpc);
}
if (cgi != GIMode::NONE) {
grpState.injection_control(group, Phase::GAS, cgi);
}
if (cwi != GIMode::NONE) {
grpState.injection_control(group, Phase::WATER, cwi);
}
}
void
BlackoilWellModelGeneric::
loadRestartGuideRates(const int report_step,
const GuideRateModel::Target target,
const data::Wells& rst_wells)
{
for (const auto& [well_name, rst_well] : rst_wells) {
if (! this->hasWell(well_name) || this->getWellEcl(well_name).isInjector()) {
continue;
}
this->guideRate_.init_grvalue_SI(report_step, well_name,
makeGuideRateValue(rst_well.guide_rates, target));
}
}
void
BlackoilWellModelGeneric::
loadRestartGuideRates(const int report_step,
const GuideRateConfig& config,
const std::map<std::string, data::GroupData>& rst_groups)
{
const auto target = config.model().target();
for (const auto& [group_name, rst_group] : rst_groups) {
if (! config.has_production_group(group_name)) {
continue;
}
const auto& group = config.production_group(group_name);
if ((group.guide_rate > 0.0) || (group.target != Group::GuideRateProdTarget::FORM)) {
continue;
}
this->guideRate_.init_grvalue_SI(report_step, group_name,
makeGuideRateValue(rst_group.guideRates.production, target));
}
}
void
BlackoilWellModelGeneric::
loadRestartData(const data::Wells& rst_wells,
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellState& well_state)
{
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector<rt> phs(np);
if (phases.phase_used[BlackoilPhases::Aqua]) {
phs.at(phases.phase_pos[BlackoilPhases::Aqua]) = rt::wat;
}
if (phases.phase_used[BlackoilPhases::Liquid]) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if (phases.phase_used[BlackoilPhases::Vapour]) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for (auto well_index = 0*well_state.size();
well_index < well_state.size();
++well_index)
{
const auto& well_name = well_state.name(well_index);
this->loadRestartWellData(well_name, handle_ms_well, phs,
rst_wells.at(well_name),
this->well_perf_data_[well_index],
well_state.well(well_index));
}
for (const auto& [group, value] : grpNwrkValues.groupData) {
this->loadRestartGroupData(group, value);
}
}
void
BlackoilWellModelGeneric::
initFromRestartFile(const RestartValue& restartValues,
WellTestState wtestState,
const size_t numCells,
bool handle_ms_well)
{
// The restart step value is used to identify wells present at the given
// time step. Wells that are added at the same time step as RESTART is initiated
// will not be present in a restart file. Use the previous time step to retrieve
// wells that have information written to the restart file.
const int report_step = std::max(eclState_.getInitConfig().getRestartStep() - 1, 0);
const auto& config = this->schedule()[report_step].guide_rate();
// wells_ecl_ should only contain wells on this processor.
wells_ecl_ = getLocalWells(report_step);
this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
this->initializeWellProdIndCalculators();
this->initializeWellPerfData();
if (! this->wells_ecl_.empty()) {
handle_ms_well &= anyMSWellOpenLocal();
// Resize for restart step
this->wellState().resize(this->wells_ecl_, this->local_parallel_well_info_,
this->schedule(), handle_ms_well, numCells,
this->well_perf_data_, this->summaryState_);
loadRestartData(restartValues.wells, restartValues.grp_nwrk,
this->phase_usage_, handle_ms_well, this->wellState());
if (config.has_model()) {
this->loadRestartGuideRates(report_step,
config.model().target(),
restartValues.wells);
}
}
if (config.has_model()) {
this->loadRestartGuideRates(report_step, config, restartValues.grp_nwrk.groupData);
this->guideRate_.updateGuideRateExpiration(this->schedule().seconds(report_step), report_step);
}
this->active_wgstate_.wtest_state(std::move(wtestState));
this->commitWGState();
initial_step_ = false;
}
void
BlackoilWellModelGeneric::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
std::vector<Well>
BlackoilWellModelGeneric::
getLocalWells(const int timeStepIdx) const
{
auto w = schedule().getWells(timeStepIdx);
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w;
}
std::vector<std::reference_wrapper<ParallelWellInfo>>
BlackoilWellModelGeneric::
createLocalParallelWellInfo(const std::vector<Well>& wells)
{
std::vector<std::reference_wrapper<ParallelWellInfo>> local_parallel_well_info;
local_parallel_well_info.reserve(wells.size());
for (const auto& well : wells)
{
auto wellPair = std::make_pair(well.name(), true);
auto pwell = std::lower_bound(parallel_well_info_.begin(),
parallel_well_info_.end(),
wellPair);
assert(pwell != parallel_well_info_.end() &&
*pwell == wellPair);
local_parallel_well_info.push_back(std::ref(*pwell));
}
return local_parallel_well_info;
}
void
BlackoilWellModelGeneric::
initializeWellProdIndCalculators()
{
this->prod_index_calc_.clear();
this->prod_index_calc_.reserve(this->wells_ecl_.size());
for (const auto& well : this->wells_ecl_) {
this->prod_index_calc_.emplace_back(well);
}
}
void
BlackoilWellModelGeneric::
initializeWellPerfData()
{
well_perf_data_.resize(wells_ecl_.size());
int well_index = 0;
for (const auto& well : wells_ecl_) {
int completion_index = 0;
// INVALID_ECL_INDEX marks no above perf available
int completion_index_above = ParallelWellInfo::INVALID_ECL_INDEX;
well_perf_data_[well_index].clear();
well_perf_data_[well_index].reserve(well.getConnections().size());
CheckDistributedWellConnections checker(well, local_parallel_well_info_[well_index].get());
bool hasFirstPerforation = false;
bool firstOpenCompletion = true;
auto& parallelWellInfo = this->local_parallel_well_info_[well_index].get();
parallelWellInfo.beginReset();
for (const auto& completion : well.getConnections()) {
const int active_index = compressedIndexForInterior(completion.global_index());
if (completion.state() == Connection::State::OPEN) {
if (active_index >= 0) {
if (firstOpenCompletion)
{
hasFirstPerforation = true;
}
checker.connectionFound(completion_index);
PerforationData pd;
pd.cell_index = active_index;
pd.connection_transmissibility_factor = completion.CF();
pd.satnum_id = completion.satTableId();
pd.ecl_index = completion_index;
well_perf_data_[well_index].push_back(pd);
parallelWellInfo.pushBackEclIndex(completion_index_above,
completion_index);
}
firstOpenCompletion = false;
// Next time this index is the one above as each open completion is
// is stored somehwere.
completion_index_above = completion_index;
} else {
checker.connectionFound(completion_index);
if (completion.state() != Connection::State::SHUT) {
OPM_THROW(std::runtime_error,
"Completion state: " << Connection::State2String(completion.state()) << " not handled");
}
}
// Note: we rely on the connections being filtered! I.e. there are only connections
// to active cells in the global grid.
++completion_index;
}
parallelWellInfo.endReset();
checker.checkAllConnectionsFound();
parallelWellInfo.communicateFirstPerforation(hasFirstPerforation);
++well_index;
}
}
bool
BlackoilWellModelGeneric::
checkGroupConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const
{
if (group.isInjectionGroup()) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
const auto& check = checkGroupInjectionConstraints(group, reportStepIdx, phase);
if (check.first != Group::InjectionCMode::NONE) {
return true;
}
}
}
if (group.isProductionGroup()) {
const auto& check = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger);
if (check.first != Group::ProductionCMode::NONE)
{
return true;
}
}
// call recursively down the group hiearchy
bool violated = false;
for (const std::string& groupName : group.groups()) {
violated = violated || checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), reportStepIdx, deferred_logger);
}
return violated;
}
std::pair<Group::InjectionCMode, double>
BlackoilWellModelGeneric::
checkGroupInjectionConstraints(const Group& group,
const int reportStepIdx,
const Phase& phase) const
{
const auto& well_state = this->wellState();
int phasePos;
if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid])
phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid];
else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua];
else
OPM_THROW(std::runtime_error, "Unknown phase" );
auto currentControl = this->groupState().injection_control(group.name(), phase);
if (group.has_control(phase, Group::InjectionCMode::RATE))
{
if (currentControl != Group::InjectionCMode::RATE)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
const auto& controls = group.injectionControls(phase, this->summaryState_);
double target = controls.surface_max_rate;
if (group.has_gpmaint_control(phase, Group::InjectionCMode::RATE))
target = this->groupState().gpmaint_target(group.name());
if (target < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::InjectionCMode::RATE, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::RESV))
{
if (currentControl != Group::InjectionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
const auto& controls = group.injectionControls(phase, this->summaryState_);
double target = controls.resv_max_rate;
if (group.has_gpmaint_control(phase, Group::InjectionCMode::RESV))
target = this->groupState().gpmaint_target(group.name());
if (target < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::InjectionCMode::RESV, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::REIN))
{
if (currentControl != Group::InjectionCMode::REIN)
{
double production_Rate = 0.0;
const auto& controls = group.injectionControls(phase, this->summaryState_);
const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx);
production_Rate += WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false);
// sum over all nodes
production_Rate = comm_.sum(production_Rate);
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.target_reinj_fraction*production_Rate < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.target_reinj_fraction*production_Rate / current_rate;
return std::make_pair(Group::InjectionCMode::REIN, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::VREP))
{
if (currentControl != Group::InjectionCMode::VREP)
{
double voidage_rate = 0.0;
const auto& controls = group.injectionControls(phase, this->summaryState_);
const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
voidage_rate = comm_.sum(voidage_rate);
double total_rate = 0.0;
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
total_rate = comm_.sum(total_rate);
if (controls.target_void_fraction*voidage_rate < total_rate) {
double scale = 1.0;
if (total_rate > 1e-12)
scale = controls.target_void_fraction*voidage_rate / total_rate;
return std::make_pair(Group::InjectionCMode::VREP, scale);
}
}
}
return std::make_pair(Group::InjectionCMode::NONE, 1.0);
}
std::pair<Group::ProductionCMode, double>
BlackoilWellModelGeneric::
checkGroupProductionConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const
{
const auto& well_state = this->wellState();
const auto controls = group.productionControls(summaryState_);
const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name());
if (group.has_control(Group::ProductionCMode::ORAT))
{
if (currentControl != Group::ProductionCMode::ORAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.oil_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.oil_target / current_rate;
return std::make_pair(Group::ProductionCMode::ORAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::WRAT))
{
if (currentControl != Group::ProductionCMode::WRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.water_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.water_target / current_rate;
return std::make_pair(Group::ProductionCMode::WRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::GRAT))
{
if (currentControl != Group::ProductionCMode::GRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.gas_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.gas_target / current_rate;
return std::make_pair(Group::ProductionCMode::GRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::LRAT))
{
if (currentControl != Group::ProductionCMode::LRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.liquid_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.liquid_target / current_rate;
return std::make_pair(Group::ProductionCMode::LRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::CRAT))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger);
}
if (group.has_control(Group::ProductionCMode::RESV))
{
if (currentControl != Group::ProductionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
double target = controls.resv_target;
if (group.has_gpmaint_control(Group::ProductionCMode::RESV))
target = this->groupState().gpmaint_target(group.name());
if ( target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::ProductionCMode::RESV, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::PRBL))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger);
}
return std::make_pair(Group::ProductionCMode::NONE, 1.0);
}
void
BlackoilWellModelGeneric::
checkGconsaleLimits(const Group& group,
WellState& well_state,
const int reportStepIdx,
DeferredLogger& deferred_logger)
{
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, reportStepIdx, deferred_logger);
}
// only for groups with gas injection controls
if (!group.hasInjectionControl(Phase::GAS)) {
return;
}
// check if gconsale is used for this group
if (!schedule()[reportStepIdx].gconsale().has(group.name()))
return;
std::ostringstream ss;
const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState_);
const Group::ProductionCMode& oldProductionControl = this->groupState().production_control(group.name());
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
double production_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false);
double injection_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true);
// sum over all nodes
injection_rate = comm_.sum(injection_rate);
production_rate = comm_.sum(production_rate);
double sales_rate = production_rate - injection_rate;
double production_target = gconsale.sales_target + injection_rate;
// add import rate and substract consumption rate for group for gas
if (schedule()[reportStepIdx].gconsump().has(group.name())) {
const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState_);
if (phase_usage_.phase_used[BlackoilPhases::Vapour]) {
sales_rate += gconsump.import_rate;
sales_rate -= gconsump.consumption_rate;
production_target -= gconsump.import_rate;
production_target += gconsump.consumption_rate;
}
}
if (sales_rate > gconsale.max_sales_rate) {
switch(gconsale.max_proc) {
case GConSale::MaxProcedure::NONE: {
if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) {
ss << "Group sales exceed maximum limit, but the action is NONE for " + group.name() + ". Nothing happens";
}
break;
}
case GConSale::MaxProcedure::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::CON_P: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::MAXR: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::END: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::RATE: {
this->groupState().production_control(group.name(), Group::ProductionCMode::GRAT);
ss << "Maximum GCONSALE limit violated for " << group.name() << ". The group is switched from ";
ss << Group::ProductionCMode2String(oldProductionControl) << " to " << Group::ProductionCMode2String(Group::ProductionCMode::GRAT);
ss << " and limited by the maximum sales rate after consumption and import are considered" ;
this->groupState().update_grat_sales_target(group.name(), production_target);
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
}
if (sales_rate < gconsale.min_sales_rate) {
const Group::ProductionCMode& currentProductionControl = this->groupState().production_control(group.name());
if ( currentProductionControl == Group::ProductionCMode::GRAT ) {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value and is under GRAT control. \n";
ss << "The GRAT is increased to meet the sales minimum rate. \n";
this->groupState().update_grat_sales_target(group.name(), production_target);
//} else if () {//TODO add action for WGASPROD
//} else if () {//TODO add action for drilling queue
} else {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value but cannot increase the group production rate \n";
ss << "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n";
ss << "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken. \n ";
}
}
if (gconsale.sales_target < 0.0) {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger);
}
if (!ss.str().empty() && comm_.rank() == 0)
deferred_logger.info(ss.str());
}
bool
BlackoilWellModelGeneric::
checkGroupHigherConstraints(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
// Set up coefficients for RESV <-> surface rate conversion.
// Use the pvtRegionIdx from the top cell of the first well.
// TODO fix this!
// This is only used for converting RESV rates.
// What is the proper approach?
const int fipnum = 0;
int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty()
? pvt_region_idx_[0]
: pvt_region_idx_[well_perf_data_[0][0].cell_index];
bool changed = false;
if ( comm_.size() > 1)
{
// Just like in the sequential case the pvtregion is determined
// by the first cell of the first well. What is the first well
// is decided by the order in the Schedule using Well::seqIndex()
int firstWellIndex = well_perf_data_.empty() ?
std::numeric_limits<int>::max() : wells_ecl_[0].seqIndex();
auto regIndexPair = std::make_pair(pvtreg, firstWellIndex);
std::vector<decltype(regIndexPair)> pairs(comm_.size());
comm_.allgather(&regIndexPair, 1, pairs.data());
pvtreg = std::min_element(pairs.begin(), pairs.end(),
[](const auto& p1, const auto& p2){ return p1.second < p2.second;})
->first;
}
std::vector<double> rates(phase_usage_.num_phases, 0.0);
const bool skip = switched_groups.count(group.name()) || group.name() == "FIELD";
if (!skip && group.isInjectionGroup()) {
// Obtain rates for group.
std::vector<double> resv_coeff_inj(phase_usage_.num_phases, 0.0);
calcInjRates(fipnum, pvtreg, resv_coeff_inj);
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ true);
// Sum over all processes
rates[phasePos] = comm_.sum(local_current_rate);
}
const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS };
for (Phase phase : all) {
// Check higher up only if under individual (not FLD) control.
auto currentControl = this->groupState().injection_control(group.name(), phase);
if (currentControl != Group::InjectionCMode::FLD && group.injectionGroupControlAvailable(phase)) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed_this = WellGroupHelpers::checkGroupConstraintsInj(
group.name(),
group.parent(),
parentGroup,
this->wellState(),
this->groupState(),
reportStepIdx,
&guideRate_,
rates.data(),
phase,
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState_,
resv_coeff_inj,
deferred_logger);
if (changed_this.first) {
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ true, this->groupState(), this->wellState());
changed = true;
}
}
}
}
if (!skip && group.isProductionGroup()) {
// Obtain rates for group.
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ false);
// Sum over all processes
rates[phasePos] = -comm_.sum(local_current_rate);
}
std::vector<double> resv_coeff(phase_usage_.num_phases, 0.0);
calcRates(fipnum, pvtreg, resv_coeff);
// Check higher up only if under individual (not FLD) control.
const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name());
if (currentControl != Group::ProductionCMode::FLD && group.productionGroupControlAvailable()) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed_this = WellGroupHelpers::checkGroupConstraintsProd(
group.name(),
group.parent(),
parentGroup,
this->wellState(),
this->groupState(),
reportStepIdx,
&guideRate_,
rates.data(),
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState_,
resv_coeff,
deferred_logger);
if (changed_this.first) {
switched_groups.insert(group.name());
const auto exceed_action = group.productionControls(summaryState_).exceed_action;
actionOnBrokenConstraints(group, exceed_action, Group::ProductionCMode::FLD, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
bool changed_this = checkGroupHigherConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups);
changed = changed || changed_this;
}
return changed;
}
bool
BlackoilWellModelGeneric::
updateGroupIndividualControl(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
bool changed = false;
const bool skip = switched_groups.count(group.name());
if (!skip && group.isInjectionGroup())
{
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
const auto& changed_this = checkGroupInjectionConstraints(group, reportStepIdx, phase);
if (changed_this.first != Group::InjectionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, changed_this.first, phase, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
}
if (!skip && group.isProductionGroup()) {
const auto& changed_this = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger);
const auto controls = group.productionControls(summaryState_);
if (changed_this.first != Group::ProductionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, controls.exceed_action, changed_this.first, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
bool changed_this = updateGroupIndividualControl( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups);
changed = changed || changed_this;
}
return changed;
}
bool
BlackoilWellModelGeneric::
updateGroupIndividualControls(DeferredLogger& deferred_logger,
std::set<std::string>& switched_groups,
const int reportStepIdx,
const int iterationIdx)
{
const int nupcol = schedule()[reportStepIdx].nupcol();
// don't switch group control when iterationIdx > nupcol
// to avoid oscilations between group controls
if (iterationIdx > nupcol)
return false;
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
return updateGroupIndividualControl(fieldGroup, deferred_logger,
reportStepIdx, switched_groups);
}
bool
BlackoilWellModelGeneric::
updateGroupHigherControls(DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
return checkGroupHigherConstraints(fieldGroup, deferred_logger, reportStepIdx, switched_groups);
}
void
BlackoilWellModelGeneric::
actionOnBrokenConstraints(const Group& group,
const Group::ExceedAction& exceed_action,
const Group::ProductionCMode& newControl,
DeferredLogger& deferred_logger)
{
const Group::ProductionCMode oldControl = this->groupState().production_control(group.name());
std::ostringstream ss;
switch(exceed_action) {
case Group::ExceedAction::NONE: {
if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) {
ss << "Group production exceed action is NONE for group " + group.name() + ". Nothing happens.";
}
break;
}
case Group::ExceedAction::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger);
break;
}
case Group::ExceedAction::CON_PLUS: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger);
break;
}
case Group::ExceedAction::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger);
break;
}
case Group::ExceedAction::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger);
break;
}
case Group::ExceedAction::RATE: {
if (oldControl != newControl) {
this->groupState().production_control(group.name(), newControl);
ss << "Switching production control mode for group "<< group.name()
<< " from " << Group::ProductionCMode2String(oldControl)
<< " to " << Group::ProductionCMode2String(newControl);
}
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
Parallel::Communication cc = comm_;
if (!ss.str().empty() && cc.rank() == 0)
deferred_logger.info(ss.str());
}
void
BlackoilWellModelGeneric::
actionOnBrokenConstraints(const Group& group,
const Group::InjectionCMode& newControl,
const Phase& controlPhase,
DeferredLogger& deferred_logger)
{
auto oldControl = this->groupState().injection_control(group.name(), controlPhase);
std::ostringstream ss;
if (oldControl != newControl) {
const std::string from = Group::InjectionCMode2String(oldControl);
ss << "Switching injection control mode for group "<< group.name()
<< " from " << Group::InjectionCMode2String(oldControl)
<< " to " << Group::InjectionCMode2String(newControl);
this->groupState().injection_control(group.name(), controlPhase, newControl);
}
Parallel::Communication cc = comm_;
if (!ss.str().empty() && cc.rank() == 0)
deferred_logger.info(ss.str());
}
void
BlackoilWellModelGeneric::
updateEclWells(const int timeStepIdx,
const std::unordered_set<std::string>& wells)
{
for (const auto& wname : wells) {
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&wname] (const auto& well) -> bool
{
return well.name() == wname;
});
if (well_iter == this->wells_ecl_.end()) {
continue;
}
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
this->wells_ecl_[well_index] = schedule_.getWell(wname, timeStepIdx);
const auto& well = this->wells_ecl_[well_index];
auto& pd = this->well_perf_data_[well_index];
auto pdIter = pd.begin();
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
pdIter->connection_transmissibility_factor = conn.CF();
++pdIter;
}
}
this->wellState().updateStatus(well_index, well.getStatus());
this->wellState().resetConnectionTransFactors(well_index, pd);
this->prod_index_calc_[well_index].reInit(well);
}
}
double
BlackoilWellModelGeneric::
wellPI(const int well_index) const
{
const auto& pu = this->phase_usage_;
const auto& pi = this->wellState().well(well_index).productivity_index;
const auto preferred = this->wells_ecl_[well_index].getPreferredPhase();
switch (preferred) { // Should really have LIQUID = OIL + WATER here too...
case Phase::WATER:
return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]]
: 0.0;
case Phase::OIL:
return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]]
: 0.0;
case Phase::GAS:
return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]]
: 0.0;
default:
throw std::invalid_argument {
"Unsupported preferred phase " +
std::to_string(static_cast<int>(preferred))
};
}
}
double
BlackoilWellModelGeneric::
wellPI(const std::string& well_name) const
{
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&well_name](const Well& well)
{
return well.name() == well_name;
});
if (well_iter == this->wells_ecl_.end()) {
throw std::logic_error { "Could not find well: " + well_name };
}
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
return this->wellPI(well_index);
}
bool
BlackoilWellModelGeneric::
wasDynamicallyShutThisTimeStep(const int well_index) const
{
return this->closed_this_step_.find(this->wells_ecl_[well_index].name()) !=
this->closed_this_step_.end();
}
void
BlackoilWellModelGeneric::
updateWsolvent(const Group& group,
const int reportStepIdx,
const WellState& wellState)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx);
updateWsolvent(groupTmp, reportStepIdx, wellState);
}
if (group.isProductionGroup())
return;
auto currentGroupControl = this->groupState().injection_control(group.name(), Phase::GAS);
if( currentGroupControl == Group::InjectionCMode::REIN ) {
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
const auto& controls = group.injectionControls(Phase::GAS, summaryState_);
const Group& groupRein = schedule_.getGroup(controls.reinj_group, reportStepIdx);
double gasProductionRate = WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule_, wellState, reportStepIdx, gasPos, /*isInjector*/false);
double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule_, wellState, reportStepIdx, /*isInjector*/false);
solventProductionRate = comm_.sum(solventProductionRate);
gasProductionRate = comm_.sum(gasProductionRate);
double wsolvent = 0.0;
if (std::abs(gasProductionRate) > 1e-6)
wsolvent = solventProductionRate / gasProductionRate;
setWsolvent(group, reportStepIdx, wsolvent);
}
}
void
BlackoilWellModelGeneric::
setWsolvent(const Group& group,
const int reportStepIdx,
double wsolvent)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx);
setWsolvent(groupTmp, reportStepIdx, wsolvent);
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule_.getWell(wellName, reportStepIdx);
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
getGenWell(wellName)->setWsolvent(wsolvent);
}
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateValues(const Well& well) const
{
auto grval = data::GuideRateValue{};
const auto& wname = well.name();
if (!this->wellState().has(wname)) {
// No flow rates for 'wname' -- might be before well comes
// online (e.g., for the initial condition before simulation
// starts).
return grval;
}
if (!this->guideRate_.has(wname)) {
// No guiderates exist for 'wname'.
return grval;
}
const auto qs = WellGroupHelpers::
getWellRateVector(this->wellState(), this->phase_usage_, wname);
this->getGuideRateValues(qs, well.isInjector(), wname, grval);
return grval;
}
void
BlackoilWellModelGeneric::
getGuideRateValues(const GuideRate::RateVector& qs,
const bool is_inj,
const std::string& wgname,
data::GuideRateValue& grval) const
{
auto getGR = [this, &wgname, &qs](const GuideRateModel::Target t)
{
return this->guideRate_.getSI(wgname, t, qs);
};
// Note: GuideRate does currently (2020-07-20) not support Target::RES.
grval.set(data::GuideRateValue::Item::Gas,
getGR(GuideRateModel::Target::GAS));
grval.set(data::GuideRateValue::Item::Water,
getGR(GuideRateModel::Target::WAT));
if (!is_inj) {
// Producer. Extract "all" guiderate values.
grval.set(data::GuideRateValue::Item::Oil,
getGR(GuideRateModel::Target::OIL));
}
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateValues(const Group& group) const
{
auto grval = data::GuideRateValue{};
const auto& gname = group.name();
if (!this->groupState().has_production_rates(gname)) {
// No flow rates for production group 'gname' -- might be before
// group comes online (e.g., for the initial condition before
// simulation starts).
return grval;
}
if (!this->guideRate_.has(gname)) {
// No guiderates exist for 'gname'.
return grval;
}
const auto qs = WellGroupHelpers::
getProductionGroupRateVector(this->groupState(), this->phase_usage_, gname);
const auto is_inj = false; // This procedure only applies to G*PGR.
this->getGuideRateValues(qs, is_inj, gname, grval);
return grval;
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateInjectionGroupValues(const Group& group) const
{
auto grval = data::GuideRateValue{};
const auto& gname = group.name();
if (this->guideRate_.has(gname, Phase::GAS)) {
grval.set(data::GuideRateValue::Item::Gas,
this->guideRate_.getSI(gname, Phase::GAS));
}
if (this->guideRate_.has(gname, Phase::WATER)) {
grval.set(data::GuideRateValue::Item::Water,
this->guideRate_.getSI(gname, Phase::WATER));
}
return grval;
}
void
BlackoilWellModelGeneric::
assignWellGuideRates(data::Wells& wsrpt) const
{
for (const auto& well : this->wells_ecl_) {
auto xwPos = wsrpt.find(well.name());
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
continue;
}
xwPos->second.guide_rates = this->getGuideRateValues(well);
}
}
void
BlackoilWellModelGeneric::
assignShutConnections(data::Wells& wsrpt,
const int reportStepIndex) const
{
auto wellID = 0;
for (const auto& well : this->wells_ecl_) {
auto& xwel = wsrpt[well.name()]; // data::Wells is a std::map<>
xwel.dynamicStatus = this->schedule()
.getWell(well.name(), reportStepIndex).getStatus();
const auto wellIsOpen = xwel.dynamicStatus == Well::Status::OPEN;
auto skip = [wellIsOpen](const Connection& conn)
{
return wellIsOpen && (conn.state() != Connection::State::SHUT);
};
if (this->wellTestState().well_is_closed(well.name()) &&
!this->wasDynamicallyShutThisTimeStep(wellID))
{
xwel.dynamicStatus = well.getAutomaticShutIn()
? Well::Status::SHUT : Well::Status::STOP;
}
auto& xcon = xwel.connections;
for (const auto& conn : well.getConnections()) {
if (skip(conn)) {
continue;
}
auto& xc = xcon.emplace_back();
xc.index = conn.global_index();
xc.pressure = xc.reservoir_rate = 0.0;
xc.effective_Kh = conn.Kh();
xc.trans_factor = conn.CF();
}
++wellID;
}
}
std::unordered_map<std::string, data::GroupGuideRates>
BlackoilWellModelGeneric::
calculateAllGroupGuiderates(const int reportStepIdx) const
{
auto gr = std::unordered_map<std::string, data::GroupGuideRates>{};
// Stack backed by vector<> since the number of groups is expected to be
// small. We don't need the full power of std::deque here.
auto unprocessed = std::stack<std::string, std::vector<std::string>>{};
auto discovered = std::unordered_set<std::size_t>{};
auto is_seen = [&discovered](const Group& group)
{
return discovered.find(group.insert_index()) != discovered.end();
};
auto is_seen_group = [this, &is_seen, reportStepIdx](const std::string& group)
{
return is_seen(this->schedule().getGroup(group, reportStepIdx));
};
// Post-order depth first tree traversal, starting from 'FIELD', during
// which we visit a node (i.e., a group) only once all of its children
// have been visited.
unprocessed.push("FIELD");
while (! unprocessed.empty()) {
const auto& group = this->schedule().getGroup(unprocessed.top(), reportStepIdx);
const auto& gname = group.name();
if (is_seen(group)) {
unprocessed.pop();
if (this->guideRate_.has(gname)) {
gr[gname].production = this->getGuideRateValues(group);
}
if (this->guideRate_.has(gname, Phase::WATER) ||
this->guideRate_.has(gname, Phase::GAS))
{
gr[gname].injection =
this->getGuideRateInjectionGroupValues(group);
}
if (gname == "FIELD") { continue; }
const auto parent = group.parent();
if (parent == "FIELD") { continue; }
gr[parent].injection += gr[gname].injection;
gr[parent].production += gr[gname].production;
continue;
}
discovered.insert(group.insert_index());
if (group.wellgroup()) {
for (const auto& wname : group.wells()) {
const auto& well = this->schedule().getWell(wname, reportStepIdx);
auto& grval = well.isInjector()
? gr[gname].injection
: gr[gname].production;
grval += this->getGuideRateValues(well);
}
}
else {
for (const auto& grp : group.groups()) {
if (! is_seen_group(grp)) {
unprocessed.push(grp);
}
}
}
}
return gr;
}
void
BlackoilWellModelGeneric::
assignGroupControl(const Group& group,
data::GroupData& gdata) const
{
const auto& gname = group.name();
const auto grup_type = group.getGroupType();
auto& cgc = gdata.currentControl;
cgc.currentProdConstraint = Group::ProductionCMode::NONE;
cgc.currentGasInjectionConstraint =
cgc.currentWaterInjectionConstraint = Group::InjectionCMode::NONE;
if (this->groupState().has_production_control(gname)) {
cgc.currentProdConstraint = this->groupState().production_control(gname);
}
if ((grup_type == ::Opm::Group::GroupType::INJECTION) ||
(grup_type == ::Opm::Group::GroupType::MIXED))
{
if (this->groupState().has_injection_control(gname, Phase::WATER)) {
cgc.currentWaterInjectionConstraint = this->groupState().injection_control(gname, Phase::WATER);
}
if (this->groupState().has_injection_control(gname, Phase::GAS)) {
cgc.currentGasInjectionConstraint = this->groupState().injection_control(gname, Phase::GAS);
}
}
}
void
BlackoilWellModelGeneric::
assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const
{
auto& prod = gdata.guideRates.production; prod.clear();
auto& inj = gdata.guideRates.injection; inj .clear();
auto xgrPos = groupGuideRates.find(group.name());
if (xgrPos == groupGuideRates.end()) {
// No guiderates defined for this group.
return;
}
const auto& xgr = xgrPos->second;
if (this->guideRate_.has(group.name())) {
prod = xgr.production;
}
if (this->guideRate_.has(group.name(), Phase::WATER) ||
this->guideRate_.has(group.name(), Phase::GAS))
{
inj = xgr.injection;
}
}
void
BlackoilWellModelGeneric::
assignGroupValues(const int reportStepIdx,
std::map<std::string, data::GroupData>& gvalues) const
{
const auto groupGuideRates =
this->calculateAllGroupGuiderates(reportStepIdx);
for (const auto& gname : schedule_.groupNames(reportStepIdx)) {
const auto& grup = schedule_.getGroup(gname, reportStepIdx);
auto& gdata = gvalues[gname];
this->assignGroupControl(grup, gdata);
this->assignGroupGuideRates(grup, groupGuideRates, gdata);
}
}
void
BlackoilWellModelGeneric::
assignNodeValues(std::map<std::string, data::NodeData>& nodevalues) const
{
nodevalues.clear();
for (const auto& [node, pressure] : node_pressures_) {
nodevalues.emplace(node, data::NodeData{pressure});
}
}
data::GroupAndNetworkValues
BlackoilWellModelGeneric::
groupAndNetworkData(const int reportStepIdx) const
{
auto grp_nwrk_values = data::GroupAndNetworkValues{};
this->assignGroupValues(reportStepIdx, grp_nwrk_values.groupData);
this->assignNodeValues(grp_nwrk_values.nodeData);
return grp_nwrk_values;
}
void
BlackoilWellModelGeneric::
updateAndCommunicateGroupData(const int reportStepIdx,
const int iterationIdx)
{
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
const int nupcol = schedule()[reportStepIdx].nupcol();
// This builds some necessary lookup structures, so it must be called
// before we copy to well_state_nupcol_.
this->wellState().updateGlobalIsGrup(comm_);
if (iterationIdx < nupcol) {
this->updateNupcolWGState();
}
auto& well_state = this->wellState();
const auto& well_state_nupcol = this->nupcolWellState();
// the group target reduction rates needs to be update since wells may have switched to/from GRUP control
// The group target reduction does not honor NUPCOL.
std::vector<double> groupTargetReduction(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReduction);
std::vector<double> groupTargetReductionInj(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReductionInj);
WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState_, well_state_nupcol, this->groupState());
WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateSurfaceRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
// We use the rates from the previous time-step to reduce oscillations
WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, this->prevWellState(), well_state);
// Set ALQ for off-process wells to zero
for (const auto& wname : schedule().wellNames(reportStepIdx)) {
const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer();
const bool not_on_this_process = !well_state.has(wname);
if (is_producer && not_on_this_process) {
well_state.setALQ(wname, 0.0);
}
}
well_state.communicateGroupRates(comm_);
this->groupState().communicate_rates(comm_);
}
bool
BlackoilWellModelGeneric::
hasTHPConstraints() const
{
int local_result = false;
for (const auto& well : well_container_generic_) {
if (well->wellHasTHPConstraints(summaryState_)) {
local_result=true;
}
}
return comm_.max(local_result);
}
bool
BlackoilWellModelGeneric::
forceShutWellByName(const std::string& wellname,
const double simulation_time)
{
// Only add the well to the closed list on the
// process that owns it.
int well_was_shut = 0;
for (const auto& well : well_container_generic_) {
if (well->name() == wellname && !well->wellIsStopped()) {
wellTestState().close_well(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time);
well_was_shut = 1;
break;
}
}
// Communicate across processes if a well was shut.
well_was_shut = comm_.max(well_was_shut);
// the wellTesteState is updated between timesteps and we also need to update the privous WGstate
if(well_was_shut)
this->commitWGState();
// Only log a message on the output rank.
if (terminal_output_ && well_was_shut) {
const std::string msg = "Well " + wellname
+ " will be shut because it cannot get converged.";
OpmLog::info(msg);
}
return (well_was_shut == 1);
}
void
BlackoilWellModelGeneric::
inferLocalShutWells()
{
this->local_shut_wells_.clear();
const auto nw = this->numLocalWells();
auto used = std::vector<bool>(nw, false);
for (const auto& wellPtr : this->well_container_generic_) {
used[wellPtr->indexOfWell()] = true;
}
for (auto wellID = 0; wellID < nw; ++wellID) {
if (! used[wellID]) {
this->local_shut_wells_.push_back(wellID);
}
}
}
void
BlackoilWellModelGeneric::
updateNetworkPressures(const int reportStepIdx)
{
// Get the network and return if inactive.
const auto& network = schedule()[reportStepIdx].network();
if (!network.active()) {
return;
}
node_pressures_ = WellGroupHelpers::computeNetworkPressures(network,
this->wellState(),
this->groupState(),
*(vfp_properties_->getProd()),
schedule(),
reportStepIdx);
// Set the thp limits of wells
for (auto& well : well_container_generic_) {
// Producers only, since we so far only support the
// "extended" network model (properties defined by
// BRANPROP and NODEPROP) which only applies to producers.
if (well->isProducer()) {
const auto it = node_pressures_.find(well->wellEcl().groupName());
if (it != node_pressures_.end()) {
// The well belongs to a group with has a network pressure constraint,
// set the dynamic THP constraint of the well accordingly.
well->setDynamicThpLimit(it->second);
}
}
}
}
void
BlackoilWellModelGeneric::
calculateEfficiencyFactors(const int reportStepIdx)
{
if ( !localWellsActive() ) {
return;
}
for (auto& well : well_container_generic_) {
const Well& wellEcl = well->wellEcl();
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor);
well->setWellEfficiencyFactor(well_efficiency_factor);
}
}
WellInterfaceGeneric*
BlackoilWellModelGeneric::
getGenWell(const std::string& well_name)
{
// finding the iterator of the well in wells_ecl
auto well = std::find_if(well_container_generic_.begin(),
well_container_generic_.end(),
[&well_name](const WellInterfaceGeneric* elem)->bool {
return elem->name() == well_name;
});
assert(well != well_container_generic_.end());
return *well;
}
void
BlackoilWellModelGeneric::
setRepRadiusPerfLength()
{
for (const auto& well : well_container_generic_) {
well->setRepRadiusPerfLength();
}
}
void
BlackoilWellModelGeneric::
gliftDebug(const std::string& msg,
DeferredLogger& deferred_logger) const
{
if (this->glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : BlackoilWellModel : {}", msg);
deferred_logger.info(message);
}
}
void
BlackoilWellModelGeneric::
gliftDebugShowALQ(DeferredLogger& deferred_logger)
{
for (auto& well : this->well_container_generic_) {
if (well->isProducer()) {
auto alq = this->wellState().getALQ(well->name());
const std::string msg = fmt::format("ALQ_REPORT : {} : {}",
well->name(), alq);
gliftDebug(msg, deferred_logger);
}
}
}
// If a group has any production rate constraints, and/or a limit
// on its total rate of lift gas supply, allocate lift gas
// preferentially to the wells that gain the most benefit from
// it. Lift gas increments are allocated in turn to the well that
// currently has the largest weighted incremental gradient. The
// procedure takes account of any limits on the group production
// rate or lift gas supply applied to any level of group.
void
BlackoilWellModelGeneric::
gasLiftOptimizationStage2(DeferredLogger& deferred_logger,
GLiftProdWells& prod_wells,
GLiftOptWells& glift_wells,
GLiftWellStateMap& glift_well_state_map,
const int episodeIndex)
{
GasLiftStage2 glift {episodeIndex,
comm_,
schedule_,
summaryState_,
deferred_logger,
this->wellState(),
prod_wells,
glift_wells,
glift_well_state_map};
glift.runOptimize();
}
void
BlackoilWellModelGeneric::
updateWellPotentials(const int reportStepIdx,
const bool onlyAfterEvent,
const SummaryConfig& summaryConfig,
DeferredLogger& deferred_logger)
{
auto well_state_copy = this->wellState();
const bool write_restart_file = schedule().write_rst_file(reportStepIdx);
auto exc_type = ExceptionType::NONE;
std::string exc_msg;
size_t widx = 0;
for (const auto& well : well_container_generic_) {
const bool needed_for_summary =
((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) ||
((summaryConfig.hasKeyword( "GWPI") ||
summaryConfig.hasKeyword( "GOPI") ||
summaryConfig.hasKeyword( "GGPI")) && well->isInjector()) ||
((summaryConfig.hasKeyword( "FWPI") ||
summaryConfig.hasKeyword( "FOPI") ||
summaryConfig.hasKeyword( "FGPI")) && well->isInjector()) ||
((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer()) ||
((summaryConfig.hasKeyword( "GWPP") ||
summaryConfig.hasKeyword( "GOPP") ||
summaryConfig.hasKeyword( "GGPP")) && well->isProducer()) ||
((summaryConfig.hasKeyword( "FWPP") ||
summaryConfig.hasKeyword( "FOPP") ||
summaryConfig.hasKeyword( "FGPP")) && well->isProducer());
// At the moment, the following events are considered
// for potentials update
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::COMPLETION_CHANGE
+ ScheduleEvents::WELL_PRODUCTIVITY_INDEX
+ ScheduleEvents::WELL_WELSPECS_UPDATE
+ ScheduleEvents::WELLGROUP_EFFICIENCY_UPDATE
+ ScheduleEvents::NEW_WELL
+ ScheduleEvents::PRODUCTION_UPDATE
+ ScheduleEvents::INJECTION_UPDATE;
const auto& events = schedule()[reportStepIdx].wellgroup_events();
const bool event = events.hasEvent(well->name(), ScheduleEvents::ACTIONX_WELL_EVENT) ||
(report_step_starts_ && events.hasEvent(well->name(), effective_events_mask));
const bool needPotentialsForGuideRates = well->underPredictionMode() && (!onlyAfterEvent || event);
const bool needPotentialsForOutput = !onlyAfterEvent && (needed_for_summary || write_restart_file);
const bool compute_potential = needPotentialsForOutput || needPotentialsForGuideRates;
if (compute_potential)
{
this->computePotentials(widx, well_state_copy, exc_msg, exc_type, deferred_logger);
}
++widx;
}
logAndCheckForExceptionsAndThrow(deferred_logger, exc_type,
"computeWellPotentials() failed: " + exc_msg,
terminal_output_, comm_);
}
void
BlackoilWellModelGeneric::
runWellPIScaling(const int timeStepIdx,
DeferredLogger& local_deferredLogger)
{
if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == timeStepIdx)) {
// We've already run WELPI scaling for this report step. Most
// common for the very first report step. Don't redo WELPI scaling.
return;
}
auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool
{
return this->schedule()[timeStepIdx].wellgroup_events()
.hasEvent(this->wells_ecl_[well_index].name(),
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
};
auto updateEclWell = [this, timeStepIdx](const int well_index) -> void
{
const auto& schedule = this->schedule();
const auto& wname = this->wells_ecl_[well_index].name();
this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx);
const auto& well = this->wells_ecl_[well_index];
auto& pd = this->well_perf_data_[well_index];
auto pdIter = pd.begin();
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
pdIter->connection_transmissibility_factor = conn.CF();
++pdIter;
}
}
this->wellState().resetConnectionTransFactors(well_index, pd);
this->prod_index_calc_[well_index].reInit(well);
};
auto rescaleWellPI =
[this, timeStepIdx](const int well_index,
const double newWellPI) -> void
{
const auto& wname = this->wells_ecl_[well_index].name();
schedule_.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
};
// Minimal well setup to compute PI/II values
{
auto saved_previous_wgstate = this->prevWGState();
this->commitWGState();
this->createWellContainer(timeStepIdx);
this->inferLocalShutWells();
this->initWellContainer();
this->calculateProductivityIndexValues(local_deferredLogger);
this->calculateProductivityIndexValuesShutWells(timeStepIdx, local_deferredLogger);
this->commitWGState(std::move(saved_previous_wgstate));
}
const auto nw = this->numLocalWells();
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
if (hasWellPIEvent(wellID)) {
rescaleWellPI(wellID, this->wellPI(wellID));
updateEclWell(wellID);
}
}
this->last_run_wellpi_ = timeStepIdx;
}
}