mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
instead of passing a "minimal" fluid state that defines the thermodynamic conditions on the domain boundary and the models calculating everything they need based on this, it is now assumed that all quantities needed by the code that computes the boundary fluxes are defined. This simplifies the boundary flux computation code, it allows to get rid of the `paramCache` argument for these methods and to potentially speed things up because quantities do not get re-calculated unconditionally. on the flipside, this requires slightly more effort to define the conditions at the boundary on the problem level and it makes it less obvious which quantities are actually used. That said, one now has the freedom to shoot oneself into the foot more easily when specifying boundary conditions and also tools like valgrind or ASAN will normally complain about undefined quantities if this happens.
550 lines
18 KiB
C++
550 lines
18 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::FingerProblem
|
|
*/
|
|
#ifndef EWOMS_FINGER_PROBLEM_HH
|
|
#define EWOMS_FINGER_PROBLEM_HH
|
|
|
|
#include <ewoms/io/structuredgridmanager.hh>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Air.hpp>
|
|
|
|
#include <ewoms/models/immiscible/immiscibleproperties.hh>
|
|
#include <ewoms/disc/common/restrictprolong.hh>
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#endif
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/grid/utility/persistentcontainer.hh>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class FingerProblem;
|
|
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(FingerBaseProblem, INHERITS_FROM(StructuredGridManager));
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
// use dune-alugrid if available
|
|
SET_TYPE_PROP(FingerBaseProblem,
|
|
Grid,
|
|
Dune::ALUGrid</*dim=*/2,
|
|
/*dimWorld=*/2,
|
|
Dune::cube,
|
|
Dune::nonconforming>);
|
|
#endif
|
|
|
|
// declare the properties used by the finger problem
|
|
NEW_PROP_TAG(InitialWaterSaturation);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(FingerBaseProblem, Problem, Ewoms::FingerProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(FingerBaseProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(FingerBaseProblem, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(FingerBaseProblem, MaterialLaw)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
|
|
|
|
// use the parker-lenhard hysteresis law
|
|
typedef Opm::ParkerLenhard<Traits> ParkerLenhard;
|
|
typedef ParkerLenhard type;
|
|
};
|
|
|
|
// Write the solutions of individual newton iterations?
|
|
SET_BOOL_PROP(FingerBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// Use forward differences instead of central differences
|
|
SET_INT_PROP(FingerBaseProblem, NumericDifferenceMethod, +1);
|
|
|
|
// Enable constraints
|
|
SET_INT_PROP(FingerBaseProblem, EnableConstraints, true);
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(FingerBaseProblem, EnableGravity, true);
|
|
|
|
// define the properties specific for the finger problem
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeX, 0.1);
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeY, 0.3);
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeZ, 0.1);
|
|
|
|
SET_SCALAR_PROP(FingerBaseProblem, InitialWaterSaturation, 0.01);
|
|
|
|
SET_INT_PROP(FingerBaseProblem, CellsX, 20);
|
|
SET_INT_PROP(FingerBaseProblem, CellsY, 70);
|
|
SET_INT_PROP(FingerBaseProblem, CellsZ, 1);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(FingerBaseProblem, EndTime, 215);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(FingerBaseProblem, InitialTimeStepSize, 10);
|
|
} // namespace Properties
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Two-phase problem featuring some gravity-driven saturation
|
|
* fingers.
|
|
*
|
|
* The domain of this problem is sized 10cm times 1m and is initially
|
|
* dry. Water is then injected at three locations on the top of the
|
|
* domain which leads to gravity fingering. The boundary conditions
|
|
* used are no-flow for the left and right and top of the domain and
|
|
* free-flow at the bottom. This problem uses the Parker-Lenhard
|
|
* hystersis model which might lead to non-monotonic saturation in the
|
|
* fingers if the right material parameters is chosen and the spatial
|
|
* discretization is fine enough.
|
|
*/
|
|
template <class TypeTag>
|
|
class FingerProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
//!\cond SKIP_THIS
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
enum {
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// phase indices
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
|
|
// equation indices
|
|
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
|
|
enum { codim = Stencil::Entity::codimension };
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
|
|
typedef typename GET_PROP(TypeTag, MaterialLaw)::ParkerLenhard ParkerLenhard;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
typedef typename GridView :: Grid Grid;
|
|
|
|
typedef Dune::PersistentContainer< Grid, std::shared_ptr< MaterialLawParams > > MaterialLawParamsContainer;
|
|
//!\endcond
|
|
|
|
public:
|
|
typedef CopyRestrictProlong< Grid, MaterialLawParamsContainer > RestrictProlongOperator;
|
|
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
FingerProblem(Simulator& simulator)
|
|
: ParentType(simulator),
|
|
materialParams_( simulator.gridManager().grid(), codim )
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \brief \copydoc FvBaseProblem::restrictProlongOperator
|
|
*/
|
|
RestrictProlongOperator restrictProlongOperator()
|
|
{
|
|
return RestrictProlongOperator( materialParams_ );
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return
|
|
std::string("finger") +
|
|
"_" + Model::name() +
|
|
"_" + Model::discretizationName() +
|
|
(this->model().enableGridAdaptation()?"_adaptive":"");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialWaterSaturation,
|
|
"The initial saturation in the domain [] of the "
|
|
"wetting phase");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit()
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
FluidSystem::init();
|
|
|
|
// parameters for the Van Genuchten law of the main imbibition
|
|
// and the main drainage curves.
|
|
micParams_.setVgAlpha(0.0037);
|
|
micParams_.setVgN(4.7);
|
|
micParams_.finalize();
|
|
|
|
mdcParams_.setVgAlpha(0.0037);
|
|
mdcParams_.setVgN(4.7);
|
|
mdcParams_.finalize();
|
|
|
|
// initialize the material parameter objects of the individual
|
|
// finite volumes, resize will resize the container to the number of elements
|
|
materialParams_.resize();
|
|
|
|
for (auto it = materialParams_.begin(),
|
|
end = materialParams_.end(); it != end; ++it ) {
|
|
std::shared_ptr< MaterialLawParams >& materialParams = *it ;
|
|
if( ! materialParams )
|
|
{
|
|
materialParams.reset( new MaterialLawParams() );
|
|
materialParams->setMicParams(&micParams_);
|
|
materialParams->setMdcParams(&mdcParams_);
|
|
materialParams->setSwr(0.0);
|
|
materialParams->setSnr(0.1);
|
|
materialParams->finalize();
|
|
ParkerLenhard::reset(*materialParams);
|
|
}
|
|
}
|
|
|
|
K_ = this->toDimMatrix_(4.6e-10);
|
|
|
|
setupInitialFluidState_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// update the history of the hysteresis law
|
|
ElementContext elemCtx(this->simulator());
|
|
|
|
auto elemIt = this->gridView().template begin<0>();
|
|
const auto& elemEndIt = this->gridView().template end<0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
elemCtx.updateAll( elem );
|
|
size_t numDofs = elemCtx.numDof(/*timeIdx=*/0);
|
|
for (unsigned scvIdx = 0; scvIdx < numDofs; ++scvIdx)
|
|
{
|
|
MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
|
|
const auto& fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
|
|
ParkerLenhard::update(materialParam, fs);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return K_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx)
|
|
{
|
|
const auto& entity = context.stencil(timeIdx).entity(spaceIdx);
|
|
assert(materialParams_[entity]);
|
|
return *materialParams_[entity];
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
|
|
assert(materialParams_[entity]);
|
|
return *materialParams_[entity];
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
|
|
values.setNoFlow();
|
|
else {
|
|
assert(onUpperBoundary_(pos));
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
|
|
}
|
|
|
|
// override the value for the liquid phase by forced
|
|
// imbibition of water on inlet boundary segments
|
|
if (onInlet_(pos)) {
|
|
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{
|
|
// assign the primary variables
|
|
values.assignNaive(initialFluidState_);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints& constraints, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
|
|
constraints.setActive(true);
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
else if (onLowerBoundary_(pos)) {
|
|
constraints.setActive(true);
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate, const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
|
|
if (!onUpperBoundary_(pos))
|
|
return false;
|
|
|
|
Scalar xInject[] = { 0.25, 0.75 };
|
|
Scalar injectLen[] = { 0.1, 0.1 };
|
|
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
|
|
if (xInject[i] - injectLen[i] / 2 < lambda
|
|
&& lambda < xInject[i] + injectLen[i] / 2)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setupInitialFluidState_()
|
|
{
|
|
auto& fs = initialFluidState_;
|
|
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
|
|
|
|
Scalar Sw = EWOMS_GET_PARAM(TypeTag, Scalar, InitialWaterSaturation);
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
// set the absolute pressures
|
|
Scalar pn = 1e5;
|
|
fs.setPressure(nonWettingPhaseIdx, pn);
|
|
fs.setPressure(wettingPhaseIdx, pn);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
|
|
}
|
|
|
|
DimMatrix K_;
|
|
|
|
typename MaterialLawParams::VanGenuchtenParams micParams_;
|
|
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
|
|
|
|
MaterialLawParamsContainer materialParams_;
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
|
|
} // namespace Ewoms
|
|
|
|
#endif
|