mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 01:07:24 -06:00
0406d6780f
instead of passing a "minimal" fluid state that defines the thermodynamic conditions on the domain boundary and the models calculating everything they need based on this, it is now assumed that all quantities needed by the code that computes the boundary fluxes are defined. This simplifies the boundary flux computation code, it allows to get rid of the `paramCache` argument for these methods and to potentially speed things up because quantities do not get re-calculated unconditionally. on the flipside, this requires slightly more effort to define the conditions at the boundary on the problem level and it makes it less obvious which quantities are actually used. That said, one now has the freedom to shoot oneself into the foot more easily when specifying boundary conditions and also tools like valgrind or ASAN will normally complain about undefined quantities if this happens.
316 lines
13 KiB
C++
316 lines
13 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::Tutorial1Problem
|
|
*/
|
|
#ifndef EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian1}@*/
|
|
#define EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian2}@*/
|
|
|
|
// The numerical model
|
|
#include <ewoms/models/immiscible/immisciblemodel.hh>
|
|
|
|
// The spatial discretization (VCFV == Vertex-Centered Finite Volumes)
|
|
#include <ewoms/disc/vcfv/vcfvdiscretization.hh> /*@\label{tutorial1:include-discretization}@*/
|
|
|
|
// The chemical species that are used
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Lnapl.hpp>
|
|
|
|
// Headers required for the capillary pressure law
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp> /*@\label{tutorial1:rawLawInclude}@*/
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
// For the DUNE grid
|
|
#include <dune/grid/yaspgrid.hh> /*@\label{tutorial1:include-grid-manager}@*/
|
|
#include <ewoms/io/cubegridmanager.hh> /*@\label{tutorial1:include-grid-manager}@*/
|
|
|
|
// For Dune::FieldMatrix
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
namespace Ewoms {
|
|
// forward declaration of the problem class
|
|
template <class TypeTag>
|
|
class Tutorial1Problem;
|
|
}
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
// Create a new type tag for the problem
|
|
NEW_TYPE_TAG(Tutorial1Problem, INHERITS_FROM(ImmiscibleTwoPhaseModel)); /*@\label{tutorial1:create-type-tag}@*/
|
|
|
|
// Select the vertex centered finite volume method as spatial discretization
|
|
SET_TAG_PROP(Tutorial1Problem, SpatialDiscretizationSplice,
|
|
VcfvDiscretization); /*@\label{tutorial1:set-spatial-discretization}@*/
|
|
|
|
// Set the "Problem" property
|
|
SET_TYPE_PROP(Tutorial1Problem, Problem,
|
|
Ewoms::Tutorial1Problem<TypeTag>); /*@\label{tutorial1:set-problem}@*/
|
|
|
|
// Set grid and the grid manager to be used
|
|
SET_TYPE_PROP(Tutorial1Problem, Grid, Dune::YaspGrid</*dim=*/2>); /*@\label{tutorial1:set-grid}@*/
|
|
SET_TYPE_PROP(Tutorial1Problem, GridManager, Ewoms::CubeGridManager<TypeTag>); /*@\label{tutorial1:set-grid-manager}@*/
|
|
|
|
// Set the wetting phase /*@\label{tutorial1:2p-system-start}@*/
|
|
SET_TYPE_PROP(Tutorial1Problem,
|
|
WettingPhase, /*@\label{tutorial1:wettingPhase}@*/
|
|
Opm::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
|
|
Opm::SimpleH2O<typename GET_PROP_TYPE(TypeTag, Scalar)> >);
|
|
|
|
// Set the non-wetting phase
|
|
SET_TYPE_PROP(Tutorial1Problem,
|
|
NonwettingPhase, /*@\label{tutorial1:nonwettingPhase}@*/
|
|
Opm::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
|
|
Opm::LNAPL<typename GET_PROP_TYPE(TypeTag, Scalar)> >); /*@\label{tutorial1:2p-system-end}@*/
|
|
|
|
// Set the material law
|
|
SET_PROP(Tutorial1Problem, MaterialLaw)
|
|
{
|
|
private:
|
|
// create a class holding the necessary information for a
|
|
// two-phase capillary pressure law
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar, wettingPhaseIdx, nonWettingPhaseIdx> Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedBrooksCorey<Traits> RawMaterialLaw; /*@\label{tutorial1:rawlaw}@*/
|
|
|
|
public:
|
|
// Convert absolute saturations into effective ones before passing
|
|
// it to the base capillary pressure law
|
|
typedef Opm::EffToAbsLaw<RawMaterialLaw> type; /*@\label{tutorial1:eff2abs}@*/
|
|
};
|
|
|
|
// Disable gravity
|
|
SET_BOOL_PROP(Tutorial1Problem, EnableGravity, false); /*@\label{tutorial1:gravity}@*/
|
|
|
|
// define how long the simulation should run [s]
|
|
SET_SCALAR_PROP(Tutorial1Problem, EndTime, 100e3); /*@\label{tutorial1:default-params-begin}@*/
|
|
|
|
// define the size of the initial time step [s]
|
|
SET_SCALAR_PROP(Tutorial1Problem, InitialTimeStepSize, 125.0);
|
|
|
|
// define the physical size of the problem's domain [m]
|
|
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeX, 300.0); /*@\label{tutorial1:grid-default-params-begin}@*/
|
|
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeY, 60.0);
|
|
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeZ, 0.0);
|
|
|
|
// // define the number of cells used for discretizing the physical domain
|
|
SET_INT_PROP(Tutorial1Problem, CellsX, 100);
|
|
SET_INT_PROP(Tutorial1Problem, CellsY, 1);
|
|
SET_INT_PROP(Tutorial1Problem, CellsZ, 1); /*@\label{tutorial1:default-params-end}@*/
|
|
} // namespace Properties
|
|
} // namespace Ewoms
|
|
|
|
namespace Ewoms {
|
|
//! Tutorial problem using the "immiscible" model.
|
|
template <class TypeTag>
|
|
class Tutorial1Problem
|
|
: public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial1:def-problem}@*/
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
// Grid dimension
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
// The type of the intrinsic permeability tensor
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
// eWoms specific types are specified via the property system
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial1:matLawObjectType}@*/
|
|
|
|
// phase indices
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
// Indices of the conservation equations
|
|
enum { contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx };
|
|
enum { contiNonWettingEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx };
|
|
|
|
public:
|
|
//! The constructor of the problem. This only _allocates_ the memory required by the
|
|
//! problem. The constructor is supposed to _never ever_ throw an exception.
|
|
Tutorial1Problem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, eps_(3e-6)
|
|
{ }
|
|
|
|
//! This method initializes the data structures allocated by the problem
|
|
//! constructor. In contrast to the constructor, exceptions thrown from within this
|
|
//! method won't lead to segmentation faults.
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
// Use an isotropic and homogeneous intrinsic permeability
|
|
K_ = this->toDimMatrix_(1e-7);
|
|
|
|
// Parameters of the Brooks-Corey law
|
|
materialParams_.setEntryPressure(500.0 /*Pa*/); /*@\label{tutorial1:setLawParams}@*/
|
|
materialParams_.setLambda(2); // shape parameter
|
|
|
|
// Set the residual saturations
|
|
materialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
materialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
|
|
// wrap up the initialization of the material law's parameters
|
|
materialParams_.finalize();
|
|
}
|
|
|
|
//! Specifies the problem name. This is used for files generated by the simulation.
|
|
std::string name() const
|
|
{ return "tutorial1"; }
|
|
|
|
//! Returns the temperature at a given position.
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return 283.15; }
|
|
|
|
//! Returns the intrinsic permeability tensor [m^2] at a position.
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& /*context*/, /*@\label{tutorial1:permeability}@*/
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return K_; }
|
|
|
|
//! Defines the porosity [-] of the medium at a given position
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const /*@\label{tutorial1:porosity}@*/
|
|
{ return 0.2; }
|
|
|
|
//! Returns the parameter object for the material law at a given position
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& /*context*/, /*@\label{tutorial1:matLawParams}@*/
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return materialParams_; }
|
|
|
|
//! Evaluates the boundary conditions.
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
if (pos[0] < eps_) {
|
|
// Free-flow conditions on left boundary
|
|
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
Scalar Sw = 1.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
fs.setPressure(wettingPhaseIdx, 200e3);
|
|
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (pos[0] > this->boundingBoxMax()[0] - eps_) {
|
|
// forced outflow at the right boundary
|
|
RateVector massRate(0.0);
|
|
|
|
massRate[contiWettingEqIdx] = 0.0; // [kg / (s m^2)]
|
|
massRate[contiNonWettingEqIdx] = 3e-2; // [kg / (s m^2)]
|
|
|
|
values.setMassRate(massRate);
|
|
}
|
|
else // no flow at the remaining boundaries
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! Evaluates the source term for all conserved quantities at a given
|
|
//! position of the domain [kg/(m^3 * s)]. Positive values mean that
|
|
//! mass is created.
|
|
template <class Context>
|
|
void source(RateVector& source, const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{
|
|
source[contiWettingEqIdx] = 0.0;
|
|
source[contiNonWettingEqIdx] = 0.0;
|
|
}
|
|
|
|
//! Evaluates the initial value at a given position in the domain.
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
|
|
// the domain is initially fully saturated by LNAPL
|
|
Scalar Sw = 0.0;
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
|
|
|
|
// the temperature is given by the temperature() method
|
|
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
|
|
|
|
// set pressure of the wetting phase to 200 kPa = 2 bar
|
|
Scalar pC[numPhases];
|
|
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx),
|
|
fs);
|
|
fs.setPressure(wettingPhaseIdx, 200e3);
|
|
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
|
|
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
private:
|
|
DimMatrix K_;
|
|
// Object that holds the parameters of required by the capillary pressure law.
|
|
MaterialLawParams materialParams_; /*@\label{tutorial1:matParamsObject}@*/
|
|
|
|
// small epsilon value
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|
|
|