mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-22 15:33:29 -06:00
99 lines
3.8 KiB
C++
99 lines
3.8 KiB
C++
/*
|
|
Copyright 2022-2023 SINTEF AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <config.h>
|
|
|
|
#define BOOST_TEST_MODULE TestGpuVectorOperations
|
|
#include <boost/mpl/list.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <cuda_runtime.h>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
#include <opm/simulators/linalg/gpuistl/GpuJac.hpp>
|
|
#include <opm/simulators/linalg/gpuistl/GpuVector.hpp>
|
|
#include <opm/simulators/linalg/gpuistl/PreconditionerAdapter.hpp>
|
|
#include <opm/simulators/linalg/gpuistl/detail/gpusparse_matrix_operations.hpp>
|
|
#include <opm/simulators/linalg/gpuistl/detail/vector_operations.hpp>
|
|
|
|
using NumericTypes = boost::mpl::list<double, float>;
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(ElementWiseMultiplicationOf3By3BlockVectorAndVectorVector, T, NumericTypes)
|
|
{
|
|
/*
|
|
Example in the test for multiplying by element a blockvector with a vector of vectors
|
|
| |1 2 3| | | |3| | | |10| |
|
|
| |5 2 3| | X | |2| | = | |22| |
|
|
| |2 1 1| | | |1| | | |10| |
|
|
*/
|
|
|
|
const size_t blocksize = 3;
|
|
const size_t N = 1;
|
|
const T weight = 1.0;
|
|
|
|
std::vector<T> hostBlockVector({1.0, 2.0, 3.0, 5.0, 2.0, 3.0, 2.0, 1.0, 2.0});
|
|
std::vector<T> hostVecVector({3.0, 2.0, 1.0});
|
|
std::vector<T> hostDstVector({0, 0, 0});
|
|
Opm::gpuistl::GpuVector<T> deviceBlockVector(hostBlockVector);
|
|
Opm::gpuistl::GpuVector<T> deviceVecVector(hostVecVector);
|
|
Opm::gpuistl::GpuVector<T> deviceDstVector(hostDstVector);
|
|
|
|
Opm::gpuistl::detail::weightedDiagMV(
|
|
deviceBlockVector.data(), N, blocksize, weight, deviceVecVector.data(), deviceDstVector.data());
|
|
|
|
std::vector<T> expectedVec {10.0, 22.0, 10.0};
|
|
std::vector<T> computedVec = deviceDstVector.asStdVector();
|
|
|
|
BOOST_REQUIRE_EQUAL(expectedVec.size(), computedVec.size());
|
|
for (size_t i = 0; i < expectedVec.size(); i++) {
|
|
BOOST_CHECK_CLOSE(expectedVec[i], computedVec[i], 1e-7);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(ElementWiseMultiplicationOf2By2BlockVectorAndVectorVector, T, NumericTypes)
|
|
{
|
|
/*
|
|
Example in the test for multiplying by element a blockvector with a vector of vectors
|
|
| |1 2| | | |1| | | | 3.5| |
|
|
0.5 * | |3 4| | X | |3| | = | | 7.5| |
|
|
| | | | | |
|
|
| |4 3| | | |2| | | |10.0| |
|
|
| |2 1| | | |4| | | | 4.0| |
|
|
*/
|
|
|
|
const size_t blocksize = 2;
|
|
const size_t N = 2;
|
|
const T weight = 0.5;
|
|
|
|
std::vector<T> hostBlockVector({1.0, 2.0, 3.0, 4.0, 4.0, 3.0, 2.0, 1.0});
|
|
std::vector<T> hostVecVector({1.0, 3.0, 2.0, 4.0});
|
|
std::vector<T> hostDstVector({0, 0, 0, 0});
|
|
Opm::gpuistl::GpuVector<T> deviceBlockVector(hostBlockVector);
|
|
Opm::gpuistl::GpuVector<T> deviceVecVector(hostVecVector);
|
|
Opm::gpuistl::GpuVector<T> deviceDstVector(hostDstVector);
|
|
|
|
Opm::gpuistl::detail::weightedDiagMV(
|
|
deviceBlockVector.data(), N, blocksize, weight, deviceVecVector.data(), deviceDstVector.data());
|
|
|
|
std::vector<T> expectedVec {3.5, 7.5, 10.0, 4.0};
|
|
std::vector<T> computedVec = deviceDstVector.asStdVector();
|
|
|
|
BOOST_REQUIRE_EQUAL(expectedVec.size(), computedVec.size());
|
|
for (size_t i = 0; i < expectedVec.size(); i++) {
|
|
BOOST_CHECK_CLOSE(expectedVec[i], computedVec[i], 1e-7);
|
|
}
|
|
}
|