opm-simulators/opm/core/pressure/IncompTpfa.cpp

210 lines
8.0 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/core/pressure/mimetic/mimetic.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/sparse_sys.h>
#include <opm/core/utility/ErrorMacros.hpp>
namespace Opm
{
/// Construct solver.
/// \param[in] g A 2d or 3d grid.
/// \param[in] permeability Array of permeability tensors, the array
/// should have size N*D^2, if D == g.dimensions
/// and N == g.number_of_cells.
/// \param[in] gravity Gravity vector. If nonzero, the array should
/// have D elements.
IncompTpfa::IncompTpfa(const UnstructuredGrid& g,
const double* permeability,
const double* gravity,
const LinearSolverInterface& linsolver)
: grid_(g),
linsolver_(linsolver),
htrans_(g.cell_facepos[ g.number_of_cells ]),
trans_ (g.number_of_faces)
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_htrans_compute(gg, permeability, &htrans_[0]);
if (gravity) {
gpress_.resize(g.cell_facepos[ g.number_of_cells ], 0.0);
mim_ip_compute_gpress(gg->number_of_cells, gg->dimensions, gravity,
gg->cell_facepos, gg->cell_faces,
gg->face_centroids, gg->cell_centroids,
&gpress_[0]);
}
// gpress_omegaweighted_ is sent to assembler always, and it dislikes
// getting a zero pointer.
gpress_omegaweighted_.resize(g.cell_facepos[ g.number_of_cells ], 0.0);
h_ = ifs_tpfa_construct(gg, 0);
}
/// Destructor.
IncompTpfa::~IncompTpfa()
{
ifs_tpfa_destroy(h_);
}
/// Assemble and solve pressure system.
/// \param[in] totmob Must contain N total mobility values (one per cell).
/// totmob = \sum_{p} kr_p/mu_p.
/// \param[in] omega Must be empty if constructor gravity argument was null.
/// Otherwise must contain N mobility-weighted density values (one per cell).
/// omega = \frac{\sum_{p} mob_p rho_p}{\sum_p rho_p}.
/// \param[in] src Must contain N source rates (one per cell).
/// Positive values represent total inflow rates,
/// negative values represent total outflow rates.
/// \param[in] bcs If non-null, specifies boundary conditions.
/// If null, noflow conditions are assumed.
/// \param[out] pressure Will contain N cell-pressure values.
/// \param[out] faceflux Will contain F signed face flux values.
void IncompTpfa::solve(const std::vector<double>& totmob,
const std::vector<double>& omega,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
std::vector<double>& pressure,
std::vector<double>& faceflux)
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
if (!omega.empty()) {
if (gpress_.empty()) {
THROW("Nozero omega argument given, but gravity was null in constructor.");
}
mim_ip_density_update(gg->number_of_cells, gg->cell_facepos,
&omega[0],
&gpress_[0], &gpress_omegaweighted_[0]);
} else {
if (!gpress_.empty()) {
THROW("Empty omega argument given, but gravity was non-null in constructor.");
}
}
ifs_tpfa_forces F = { NULL, NULL };
if (! src.empty()) { F.src = &src[0]; }
F.bc = bcs;
ifs_tpfa_assemble(gg, &F, &trans_[0], &gpress_omegaweighted_[0], h_);
linsolver_.solve(h_->A, h_->b, h_->x);
pressure.resize(grid_.number_of_cells);
faceflux.resize(grid_.number_of_faces);
ifs_tpfa_solution soln = { NULL, NULL };
soln.cell_press = &pressure[0];
soln.face_flux = &faceflux[0];
ifs_tpfa_press_flux(gg, &F, &trans_[0], h_, &soln);
}
/// Assemble and solve pressure system with rock compressibility (assumed constant per cell).
/// \param[in] totmob Must contain N total mobility values (one per cell).
/// totmob = \sum_{p} kr_p/mu_p.
/// \param[in] omega Must be empty if constructor gravity argument was null.
/// Otherwise must contain N mobility-weighted density values (one per cell).
/// omega = \frac{\sum_{p} mob_p rho_p}{\sum_p rho_p}.
/// \param[in] src Must contain N source rates (one per cell).
/// Positive values represent total inflow rates,
/// negative values represent total outflow rates.
/// \param[in] bcs If non-null, specifies boundary conditions.
/// If null, noflow conditions are assumed.
/// \param[in] porevol Must contain N pore volumes.
/// \param[in] rock_comp Must contain N rock compressibilities.
/// rock_comp = (d poro / d p)*(1/poro).
/// \param[in] dt Timestep.
/// \param[out] pressure Will contain N cell-pressure values.
/// \param[out] faceflux Will contain F signed face flux values.
void IncompTpfa::solve(const std::vector<double>& totmob,
const std::vector<double>& omega,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
const std::vector<double>& porevol,
const std::vector<double>& rock_comp,
const double dt,
std::vector<double>& pressure,
std::vector<double>& faceflux)
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
if (!omega.empty()) {
if (gpress_.empty()) {
THROW("Nozero omega argument given, but gravity was null in constructor.");
}
mim_ip_density_update(gg->number_of_cells, gg->cell_facepos,
&omega[0],
&gpress_[0], &gpress_omegaweighted_[0]);
} else {
if (!gpress_.empty()) {
THROW("Empty omega argument given, but gravity was non-null in constructor.");
}
}
ifs_tpfa_forces F = { NULL, NULL };
if (! src.empty()) { F.src = &src[0]; }
F.bc = bcs;
ifs_tpfa_assemble(gg, &F, &trans_[0], &gpress_omegaweighted_[0], h_);
if (!rock_comp.empty()) {
// The extra term of the equation is
//
// porevol*rock_comp*(p - p0)/dt.
//
// The p part goes on the diagonal, the p0 on the rhs.
for (int c = 0; c < gg->number_of_cells; ++c) {
// Find diagonal
size_t j = csrmatrix_elm_index(c, c, h_->A);
h_->A->sa[j] += porevol[c]*rock_comp[c]/dt;
h_->b[c] += porevol[c]*rock_comp[c]*pressure[c]/dt;
}
}
linsolver_.solve(h_->A, h_->b, h_->x);
pressure.resize(grid_.number_of_cells);
faceflux.resize(grid_.number_of_faces);
ifs_tpfa_solution soln = { NULL, NULL };
soln.cell_press = &pressure[0];
soln.face_flux = &faceflux[0];
ifs_tpfa_press_flux(gg, &F, &trans_[0], h_, &soln);
}
} // namespace Opm