opm-simulators/opm/polymer/TransportModelPolymer.cpp
2013-03-14 13:59:31 +01:00

1617 lines
55 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/polymer/TransportModelPolymer.hpp>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/RootFinders.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <cmath>
#include <list>
#include <opm/core/utility/ErrorMacros.hpp>
// Choose error policy for scalar solves here.
typedef Opm::RegulaFalsi<Opm::WarnAndContinueOnError> RootFinder;
class Opm::TransportModelPolymer::ResidualEquation
{
public:
int cell;
double s0;
double c0;
double cmax0;
double influx; // sum_j min(v_ij, 0)*f(s_j)
double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j)
double outflux; // sum_j max(v_ij, 0)
double comp_term; //q - sum_j v_ij
double porosity;
double dtpv; // dt/pv(i)
double dps;
double rhor;
double ads0;
GradientMethod gradient_method;
TransportModelPolymer& tm;
ResidualEquation(TransportModelPolymer& tmodel, int cell_index);
void computeResidual(const double* x, double* res) const;
void computeResidual(const double* x, double* res, double& mc, double& ff) const;
double computeResidualS(const double* x) const;
double computeResidualC(const double* x) const;
void computeGradientResS(const double* x, double* res, double* gradient) const;
void computeGradientResC(const double* x, double* res, double* gradient) const;
void computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const;
private:
void computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c,
const bool if_dres_s_dsdc, const bool if_dres_c_dsdc,
double* res, double* dres_s_dsdc,
double* dres_c_dsdc, double& mc, double& ff) const;
};
class Opm::TransportModelPolymer::ResidualCGrav {
public:
const TransportModelPolymer& tm;
const int cell;
const double s0;
const double c0;
const double cmax0;
const double porosity;
const double dtpv; // dt/pv(i)
const double dps;
const double rhor;
double c_ads0;
double gf[2];
int nbcell[2];
mutable double last_s;
ResidualCGrav(const TransportModelPolymer& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux);
double operator()(double c) const;
double computeGravResidualS(double s, double c) const;
double computeGravResidualC(double s, double c) const;
double lastSaturation() const;
};
class Opm::TransportModelPolymer::ResidualSGrav {
public:
const ResidualCGrav& res_c_eq_;
double c;
ResidualSGrav(const ResidualCGrav& res_c_eq, const double c_init = 0.0);
double operator()(double s) const;
};
namespace
{
bool check_interval(const double* xmin, const double* xmax, double* x);
double norm(double* res)
{
return std::max(std::abs(res[0]), std::abs(res[1]));
}
bool solveNewtonStepSC(const double* , const Opm::TransportModelPolymer::ResidualEquation&,
const double*, double*);
bool solveNewtonStepC(const double* , const Opm::TransportModelPolymer::ResidualEquation&,
const double*, double*);
// Define a piecewise linear curve along which we will look for zero of the "s" or "r" residual.
// The curve starts at "x", goes along the direction "direction" until it hits the boundary of the box of
// admissible values for "s" and "x" (which is given by "[x_min[0], x_max[0]]x[x_min[1], x_max[1]]").
// Then it joins in a straight line the point "end_point".
class CurveInSCPlane{
public:
CurveInSCPlane();
void setup(const double* x, const double* direction,
const double* end_point, const double* x_min,
const double* x_max, const double tol,
double& t_max_out, double& t_out_out);
void computeXOfT(double*, const double) const;
private:
double direction_[2];
double end_point_[2];
double x_max_[2];
double x_min_[2];
double t_out_;
double t_max_; // t_max = t_out + 1
double x_out_[2];
double x_[2];
};
// Compute the "s" residual along the curve "curve" for a given residual equation "res_eq".
// The operator() is sent to a root solver.
class ResSOnCurve
{
public:
ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq);
double operator()(const double t) const;
CurveInSCPlane curve;
private:
const Opm::TransportModelPolymer::ResidualEquation& res_eq_;
};
// Compute the "c" residual along the curve "curve" for a given residual equation "res_eq".
// The operator() is sent to a root solver.
class ResCOnCurve
{
public:
ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq);
double operator()(const double t) const;
CurveInSCPlane curve;
private:
const Opm::TransportModelPolymer::ResidualEquation& res_eq_;
};
}
namespace Opm
{
TransportModelPolymer::TransportModelPolymer(const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const PolymerProperties& polyprops,
const SingleCellMethod method,
const double tol,
const int maxit)
: grid_(grid),
porosity_(props.porosity()),
porevolume_(NULL),
props_(props),
polyprops_(polyprops),
tol_(tol),
maxit_(maxit),
darcyflux_(0),
source_(0),
polymer_inflow_c_(0),
dt_(0.0),
concentration_(0),
cmax_(0),
fractionalflow_(grid.number_of_cells, -1.0),
mc_(grid.number_of_cells, -1.0),
method_(method),
adhoc_safety_(1.1)
{
if (props.numPhases() != 2) {
THROW("Property object must have 2 phases");
}
visc_ = props.viscosity();
#ifdef PROFILING
res_counts.clear();
#endif
// Set up smin_ and smax_
int num_cells = props.numCells();
smin_.resize(props.numPhases()*num_cells);
smax_.resize(props.numPhases()*num_cells);
std::vector<int> cells(num_cells);
for (int i = 0; i < num_cells; ++i) {
cells[i] = i;
}
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
}
void TransportModelPolymer::setPreferredMethod(SingleCellMethod method)
{
method_ = method;
}
void TransportModelPolymer::solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double* polymer_inflow_c,
const double dt,
std::vector<double>& saturation,
std::vector<double>& concentration,
std::vector<double>& cmax)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
polymer_inflow_c_ = polymer_inflow_c;
dt_ = dt;
toWaterSat(saturation, saturation_);
concentration_ = &concentration[0];
cmax_ = &cmax[0];
#if PROFILING
res_counts.clear();
#endif
reorderAndTransport(grid_, darcyflux);
toBothSat(saturation_, saturation);
}
// Residual for saturation equation, single-cell implicit Euler transport
//
// r(s) = s - s0 + dt/pv*( influx + outflux*f(s) )
//
// where influx is water influx, outflux is total outflux.
// Influxes are negative, outfluxes positive.
struct TransportModelPolymer::ResidualS
{
TransportModelPolymer::ResidualEquation& res_eq_;
const double c_;
explicit ResidualS(TransportModelPolymer::ResidualEquation& res_eq,
const double c)
: res_eq_(res_eq),
c_(c)
{
}
double operator()(double s) const
{
double x[2];
x[0] = s;
x[1] = c_;
return res_eq_.computeResidualS(x);
}
};
// Residual for concentration equation, single-cell implicit Euler transport
//
// \TODO doc me
// where ...
// Influxes are negative, outfluxes positive.
struct TransportModelPolymer::ResidualC
{
mutable double s; // Mutable in order to change it with every operator() call to be the last computed s value.
TransportModelPolymer::ResidualEquation& res_eq_;
explicit ResidualC(TransportModelPolymer::ResidualEquation& res_eq)
: res_eq_(res_eq)
{}
void computeBothResiduals(const double s_arg, const double c_arg, double& res_s, double& res_c, double& mc, double& ff) const
{
double x[2];
double res[2];
x[0] = s_arg;
x[1] = c_arg;
res_eq_.computeResidual(x, res, mc, ff);
res_s = res[0];
res_c = res[1];
}
double operator()(double c) const
{
ResidualS res_s(res_eq_, c);
int iters_used;
// Solve for s first.
// s = modifiedRegulaFalsi(res_s, std::max(tm.smin_[2*cell], dps), tm.smax_[2*cell],
// tm.maxit_, tm.tol_, iters_used);
s = RootFinder::solve(res_s, res_eq_.s0, 0.0, 1.0,
res_eq_.tm.maxit_, res_eq_.tm.tol_, iters_used);
double x[2];
x[0] = s;
x[1] = c;
double res = res_eq_.computeResidualC(x);
#ifdef EXTRA_DEBUG_OUTPUT
std::cout << "c = " << c << " s = " << s << " c-residual = " << res << std::endl;
#endif
return res;
}
double lastSaturation() const
{
return s;
}
};
// ResidualEquation gathers parameters to construct the residual, computes its
// value and the values of its derivatives.
TransportModelPolymer::ResidualEquation::ResidualEquation(TransportModelPolymer& tmodel, int cell_index)
: tm(tmodel)
{
gradient_method = Analytic;
cell = cell_index;
s0 = tm.saturation_[cell];
c0 = tm.concentration_[cell];
cmax0 = tm.cmax_[cell];
dps = tm.polyprops_.deadPoreVol();
rhor = tm.polyprops_.rockDensity();
tm.polyprops_.adsorption(c0, cmax0, ads0);
double dflux = -tm.source_[cell];
bool src_is_inflow = dflux < 0.0;
influx = src_is_inflow ? dflux : 0.0;
double mc;
tm.computeMc(tm.polymer_inflow_c_[cell_index], mc);
influx_polymer = src_is_inflow ? dflux*mc : 0.0;
outflux = !src_is_inflow ? dflux : 0.0;
comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
dtpv = tm.dt_/tm.porevolume_[cell];
porosity = tm.porosity_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
influx += flux*tm.fractionalflow_[other];
influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other];
} else {
outflux += flux;
}
comp_term -= flux;
}
}
}
void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res) const
{
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double mc;
double ff;
computeResAndJacobi(x, true, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff);
}
void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res, double& mc, double& ff) const
{
double dres_s_dsdc[2];
double dres_c_dsdc[2];
computeResAndJacobi(x, true, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff);
}
double TransportModelPolymer::ResidualEquation::computeResidualS(const double* x) const
{
double res[2];
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double mc;
double ff;
computeResAndJacobi(x, true, false, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff);
return res[0];
}
double TransportModelPolymer::ResidualEquation::computeResidualC(const double* x) const
{
double res[2];
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double mc;
double ff;
computeResAndJacobi(x, false, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff);
return res[1];
}
void TransportModelPolymer::ResidualEquation::computeGradientResS(const double* x, double* res, double* gradient) const
// If gradient_method == FinDif, use finite difference
// If gradient_method == Analytic, use analytic expresions
{
double dres_c_dsdc[2];
double mc;
double ff;
computeResAndJacobi(x, true, true, true, false, res, gradient, dres_c_dsdc, mc, ff);
}
void TransportModelPolymer::ResidualEquation::computeGradientResC(const double* x, double* res, double* gradient) const
// If gradient_method == FinDif, use finite difference
// If gradient_method == Analytic, use analytic expresions
{
double dres_s_dsdc[2];
double mc;
double ff;
computeResAndJacobi(x, true, true, false, true, res, dres_s_dsdc, gradient, mc, ff);
}
// Compute the Jacobian of the residual equations.
void TransportModelPolymer::ResidualEquation::computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const
{
double res[2];
double mc;
double ff;
computeResAndJacobi(x, false, false, true, true, res, dres_s_dsdc, dres_c_dsdc, mc, ff);
}
void TransportModelPolymer::ResidualEquation::computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c,
const bool if_dres_s_dsdc, const bool if_dres_c_dsdc,
double* res, double* dres_s_dsdc,
double* dres_c_dsdc, double& mc, double& ff) const
{
if ((if_dres_s_dsdc || if_dres_c_dsdc) && gradient_method == Analytic) {
double s = x[0];
double c = x[1];
double dff_dsdc[2];
double mc_dc;
double ads_dc;
double ads;
tm.fracFlowWithDer(s, c, cmax0, cell, ff, dff_dsdc);
if (if_dres_c_dsdc) {
tm.polyprops_.adsorptionWithDer(c, cmax0, ads, ads_dc);
tm.computeMcWithDer(c, mc, mc_dc);
} else {
tm.polyprops_.adsorption(c, cmax0, ads);
tm.computeMc(c, mc);
}
if (if_res_s) {
res[0] = s - s0 + dtpv*(outflux*ff + influx + s*comp_term);
#if PROFILING
tm.res_counts.push_back(Newton_Iter(true, cell, x[0], x[1]));
#endif
}
if (if_res_c) {
res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer)
+ dtpv*(s*c*(1.0 - dps) - rhor*ads)*comp_term;
#if PROFILING
tm.res_counts.push_back(Newton_Iter(false, cell, x[0], x[1]));
#endif
}
if (if_dres_s_dsdc) {
dres_s_dsdc[0] = 1 + dtpv*(outflux*dff_dsdc[0] + comp_term);
dres_s_dsdc[1] = dtpv*outflux*dff_dsdc[1];
}
if (if_dres_c_dsdc) {
dres_c_dsdc[0] = (1.0 - dps)*c + dtpv*outflux*(dff_dsdc[0])*mc
+ dtpv*c*(1.0 - dps)*comp_term;
dres_c_dsdc[1] = (1 - dps)*s + rhor*((1.0 - porosity)/porosity)*ads_dc
+ dtpv*outflux*(dff_dsdc[1]*mc + ff*mc_dc)
+ dtpv*(s*(1.0 - dps) - rhor*ads_dc)*comp_term;
}
} else if (if_res_c || if_res_s) {
double s = x[0];
double c = x[1];
tm.fracFlow(s, c, cmax0, cell, ff);
if (if_res_s) {
res[0] = s - s0 + dtpv*(outflux*ff + influx + s*comp_term);
#if PROFILING
tm.res_counts.push_back(Newton_Iter(true, cell, x[0], x[1]));
#endif
}
if (if_res_c) {
tm.computeMc(c, mc);
double ads;
tm.polyprops_.adsorption(c, cmax0, ads);
res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer)
+ dtpv*(s*c*(1.0 - dps) - rhor*ads)*comp_term;
#if PROFILING
tm.res_counts.push_back(Newton_Iter(false, cell, x[0], x[1]));
#endif
}
}
if ((if_dres_c_dsdc || if_dres_s_dsdc) && gradient_method == FinDif) {
double epsi = 1e-8;
double res_epsi[2];
double res_0[2];
double x_epsi[2];
computeResidual(x, res_0);
if (if_dres_s_dsdc) {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
dres_s_dsdc[0] = (res_epsi[0] - res_0[0])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
dres_s_dsdc[1] = (res_epsi[0] - res_0[0])/epsi;
}
if (if_dres_c_dsdc) {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
dres_c_dsdc[0] = (res_epsi[1] - res_0[1])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
dres_c_dsdc[1] = (res_epsi[1] - res_0[1])/epsi;
}
}
}
void TransportModelPolymer::solveSingleCell(const int cell)
{
switch (method_) {
case Bracketing:
solveSingleCellBracketing(cell);
break;
case Newton:
solveSingleCellNewton(cell);
break;
case Gradient:
solveSingleCellGradient(cell);
break;
case NewtonSimpleSC:
solveSingleCellNewtonSimple(cell,true);
break;
case NewtonSimpleC:
solveSingleCellNewtonSimple(cell,false);
break;
default:
THROW("Unknown method " << method_);
}
}
void TransportModelPolymer::solveSingleCellBracketing(int cell)
{
ResidualEquation res_eq(*this, cell);
ResidualC res(res_eq);
const double a = 0.0;
const double b = polyprops_.cMax()*adhoc_safety_; // Add 10% to account for possible non-monotonicity of hyperbolic system.
int iters_used;
// Check if current state is an acceptable solution.
double res_sc[2];
double mc, ff;
res.computeBothResiduals(saturation_[cell], concentration_[cell], res_sc[0], res_sc[1], mc, ff);
if (norm(res_sc) < tol_) {
fractionalflow_[cell] = ff;
mc_[cell] = mc;
return;
}
concentration_[cell] = RootFinder::solve(res, a, b, maxit_, tol_, iters_used);
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
saturation_[cell] = res.lastSaturation();
fracFlow(saturation_[cell], concentration_[cell], cmax_[cell], cell,
fractionalflow_[cell]);
computeMc(concentration_[cell], mc_[cell]);
}
// Newton method, where we first try a Newton step. Then, if it does not work well, we look for
// the zero of either the residual in s or the residual in c along a specified piecewise linear
// curve. In these cases, we can use a robust 1d solver.
void TransportModelPolymer::solveSingleCellGradient(int cell)
{
int iters_used_falsi = 0;
const int max_iters_split = maxit_;
int iters_used_split = 0;
// Check if current state is an acceptable solution.
ResidualEquation res_eq(*this, cell);
double x[2] = {saturation_[cell], saturation_[cell]*concentration_[cell]};
double res[2];
double mc;
double ff;
double x_c[2];
scToc(x, x_c);
res_eq.computeResidual(x_c, res, mc, ff);
if (norm(res) <= tol_) {
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
fractionalflow_[cell] = ff;
mc_[cell] = mc;
return;
}
double x_min[2] = { 0.0, 0.0 };
double x_max[2] = { 1.0, polyprops_.cMax()*adhoc_safety_ };
double x_min_res_s[2] = { x_min[0], x_min[1] };
double x_max_res_s[2] = { x_max[0], x_min[0] };
double x_min_res_sc[2] = { x_min[0], x_min[1] };
double x_max_res_sc[2] = { x_max[0], x_max[1] };
double t;
double t_max;
double t_out;
double direction[2];
double end_point[2];
double gradient[2];
ResSOnCurve res_s_on_curve(res_eq);
ResCOnCurve res_c_on_curve(res_eq);
bool if_res_s;
while ((norm(res) > tol_) && (iters_used_split < max_iters_split)) {
if (std::abs(res[0]) < std::abs(res[1])) {
if (res[0] < -tol_) {
direction[0] = x_max_res_s[0] - x[0];
direction[1] = x_max_res_s[1] - x[1];
if_res_s = true;
} else if (res[0] > tol_) {
direction[0] = x_min_res_s[0] - x[0];
direction[1] = x_min_res_s[1] - x[1];
if_res_s = true;
} else {
scToc(x, x_c);
res_eq.computeGradientResS(x_c, res, gradient);
// dResS/d(s_) = dResS/ds - c/s*dResS/ds
// dResS/d(sc_) = -1/s*dResS/dc
if (x[0] > 1e-2*tol_) {
// With s,c variables, we should have
// direction[0] = -gradient[1];
// direction[1] = gradient[0];
// With s, sc variables, we get:
scToc(x, x_c);
direction[0] = 1.0/x[0]*gradient[1];
direction[1] = gradient[0] - x_c[1]/x[0]*gradient[1];
} else {
// acceptable approximation for nonlinear relative permeability.
direction[0] = 0.0;
direction[1] = gradient[0];
}
if_res_s = false;
}
} else {
if (res[1] < -tol_) {
direction[0] = x_max_res_sc[0] - x[0];
direction[1] = x_max_res_sc[1] - x[1];
if_res_s = false;
} else if (res[1] > tol_) {
direction[0] = x_min_res_sc[0] - x[0];
direction[1] = x_min_res_sc[1] - x[1];
if_res_s = false;
} else {
res_eq.computeGradientResC(x, res, gradient);
// dResC/d(s_) = dResC/ds - c/s*dResC/ds
// dResC/d(sc_) = -1/s*dResC/dc
if (x[0] > 1e-2*tol_) {
// With s,c variables, we should have
// direction[0] = -gradient[1];
// direction[1] = gradient[0];
// With s, sc variables, we get:
scToc(x, x_c);
direction[0] = 1.0/x[0]*gradient[1];
direction[1] = gradient[0] - x_c[1]/x[0]*gradient[1];
} else {
// We take 1.0/s*gradient[1]: wrong for linear permeability,
// acceptable for nonlinear relative permeability.
direction[0] = 1.0 - res_eq.dps;
direction[1] = gradient[0];
}
if_res_s = true;
}
}
if (if_res_s) {
if (res[0] < 0) {
end_point[0] = x_max_res_s[0];
end_point[1] = x_max_res_s[1];
res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, tol_, t_max, t_out);
if (res_s_on_curve(t_out) >= 0) {
t_max = t_out;
}
} else {
end_point[0] = x_min_res_s[0];
end_point[1] = x_min_res_s[1];
res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, tol_, t_max, t_out);
if (res_s_on_curve(t_out) <= 0) {
t_max = t_out;
}
}
// Note: In some experiments modifiedRegularFalsi does not yield a result under the given tolerance.
t = RootFinder::solve(res_s_on_curve, 0., t_max, maxit_, tol_, iters_used_falsi);
res_s_on_curve.curve.computeXOfT(x, t);
} else {
if (res[1] < 0) {
end_point[0] = x_max_res_sc[0];
end_point[1] = x_max_res_sc[1];
res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, tol_, t_max, t_out);
if (res_c_on_curve(t_out) >= 0) {
t_max = t_out;
}
} else {
end_point[0] = x_min_res_sc[0];
end_point[1] = x_min_res_sc[1];
res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, tol_, t_max, t_out);
if (res_c_on_curve(t_out) <= 0) {
t_max = t_out;
}
}
t = RootFinder::solve(res_c_on_curve, 0., t_max, maxit_, tol_, iters_used_falsi);
res_c_on_curve.curve.computeXOfT(x, t);
}
scToc(x, x_c);
res_eq.computeResidual(x_c, res, mc, ff);
iters_used_split += 1;
}
if ((iters_used_split >= max_iters_split) && (norm(res) > tol_)) {
MESSAGE("Newton for single cell did not work in cell number " << cell);
solveSingleCellBracketing(cell);
} else {
scToc(x, x_c);
concentration_[cell] = x_c[1];
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
saturation_[cell] = x[0];
fractionalflow_[cell] = ff;
mc_[cell] = mc;
}
}
void TransportModelPolymer::solveSingleCellNewton(int cell)
{
const int max_iters_split = maxit_;
int iters_used_split = 0;
// Check if current state is an acceptable solution.
ResidualEquation res_eq(*this, cell);
double x[2] = {saturation_[cell], concentration_[cell]};
double res[2];
double mc;
double ff;
res_eq.computeResidual(x, res, mc, ff);
if (norm(res) <= tol_) {
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
fractionalflow_[cell] = ff;
mc_[cell] = mc;
return;
} else if (0.99 < x[0]) {
// x[0] = 0.5;
// x[1] = polyprops_.cMax()/2.0;
// res_eq.computeResidual(x, res, mc, ff);
}
const double x_min[2] = { 0.0, 0.0 };
const double x_max[2] = { 1.0, polyprops_.cMax()*adhoc_safety_ };
bool successfull_newton_step = true;
// initialize x_new to avoid warning
double x_new[2] = {0.0, 0.0};
double res_new[2];
ResSOnCurve res_s_on_curve(res_eq);
ResCOnCurve res_c_on_curve(res_eq);
// We switch to s-sc variable
x[1] = x[0]*x[1];
// x_c will contain the s-c variable
double x_c[2];
while ((norm(res) > tol_) &&
(iters_used_split < max_iters_split) &&
successfull_newton_step) {
double dres_s_dsdc[2];
double dres_c_dsdc[2];
scToc(x, x_c);
res_eq.computeJacobiRes(x_c, dres_s_dsdc, dres_c_dsdc);
double dFx_dx = (dres_s_dsdc[0]-x_c[1]*dres_s_dsdc[1]);
double dFx_dy;
if (x[0] < 1e-2*tol_) {
dFx_dy = 0.0;
} else {
dFx_dy = (dres_s_dsdc[1]/x[0]);
}
double dFy_dx = (dres_c_dsdc[0]-x_c[1]*dres_c_dsdc[1]);
double dFy_dy;
if (x[0] < 1e-2*tol_) {
dFy_dy = 1.0 - res_eq.dps;
} else {
dFy_dy = (dres_c_dsdc[1]/x[0]);
}
double det = dFx_dx*dFy_dy - dFy_dx*dFx_dy;
double alpha = 1.0;
int max_lin_it = 100;
int lin_it = 0;
res_new[0] = res[0]*2;
res_new[1] = res[1]*2;
while((norm(res_new)>norm(res)) && (lin_it<max_lin_it)) {
x_new[0] = x[0] - alpha*(res[0]*dFy_dy - res[1]*dFx_dy)/det;
x_new[1] = x[1] - alpha*(res[1]*dFx_dx - res[0]*dFy_dx)/det;
check_interval(x_min, x_max, x_new);
scToc(x_new, x_c);
res_eq.computeResidual(x_c, res_new, mc, ff);
alpha = alpha/2.0;
lin_it = lin_it + 1;
}
if (lin_it>=max_lin_it) {
successfull_newton_step = false;
} else {
scToc(x_new, x_c);
x[0] = x_c[0];
x[1] = x_c[1];
res[0] = res_new[0];
res[1] = res_new[1];
iters_used_split += 1;
successfull_newton_step = true;;
}
}
if ((iters_used_split >= max_iters_split) && (norm(res) > tol_)) {
MESSAGE("Newton for single cell did not work in cell number " << cell);
solveSingleCellBracketing(cell);
} else {
concentration_[cell] = x[1];
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
saturation_[cell] = x[0];
fractionalflow_[cell] = ff;
mc_[cell] = mc;
}
}
void TransportModelPolymer::solveSingleCellNewtonSimple(int cell,bool use_sc)
{
const int max_iters_split = maxit_;
int iters_used_split = 0;
// Check if current state is an acceptable solution.
ResidualEquation res_eq(*this, cell);
double x[2] = {saturation_[cell], concentration_[cell]};
double res[2];
double mc;
double ff;
res_eq.computeResidual(x, res, mc, ff);
if (norm(res) <= tol_) {
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
fractionalflow_[cell] = ff;
mc_[cell] = mc;
return;
}else{
//*
x[0] = saturation_[cell]-res[0];
if((x[0]>1) || (x[0]<0)){
x[0] = 0.5;
x[1] = x[1];
}
if(x[0]>0){
x[1] = concentration_[cell]*saturation_[cell]-res[1];
x[1] = x[1]/x[0];
if(x[1]> polyprops_.cMax()){
x[1]= polyprops_.cMax()/2.0;
}
if(x[1]<0){
x[1]=0;
}
}else{
x[1]=0;
}
//x[0]=0.5;x[1]=polyprops_.cMax()/2.0;
res_eq.computeResidual(x, res, mc, ff);
//*/
}
// double x_min[2] = { std::max(polyprops_.deadPoreVol(), smin_[2*cell]), 0.0 };
double x_min[2] = { 0.0, 0.0 };
double x_max[2] = { 1.0, polyprops_.cMax()*adhoc_safety_ };
bool successfull_newton_step = true;
double x_new[2];
double res_new[2];
ResSOnCurve res_s_on_curve(res_eq);
ResCOnCurve res_c_on_curve(res_eq);
while ((norm(res) > tol_) &&
(iters_used_split < max_iters_split) &&
successfull_newton_step) {
// We first try a Newton step
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double dx=tol_;
double tmp_x[2];
if(!(x[0]>0)){
tmp_x[0]=dx;
tmp_x[1]=0;
}else{
tmp_x[0]=x[0];
tmp_x[1]=x[1];
}
res_eq.computeJacobiRes(tmp_x, dres_s_dsdc, dres_c_dsdc);
double dFx_dx,dFx_dy,dFy_dx,dFy_dy;
double det = dFx_dx*dFy_dy - dFy_dx*dFx_dy;
if(use_sc){
dFx_dx=(dres_s_dsdc[0]-tmp_x[1]*dres_s_dsdc[1]/tmp_x[0]);
dFx_dy= (dres_s_dsdc[1]/tmp_x[0]);
dFy_dx=(dres_c_dsdc[0]-tmp_x[1]*dres_c_dsdc[1]/tmp_x[0]);
dFy_dy= (dres_c_dsdc[1]/tmp_x[0]);
}else{
dFx_dx= dres_s_dsdc[0];
dFx_dy= dres_s_dsdc[1];
dFy_dx= dres_c_dsdc[0];
dFy_dy= dres_c_dsdc[1];
}
det = dFx_dx*dFy_dy - dFy_dx*dFx_dy;
if(det==0){
THROW("det is zero");
}
double alpha=1;
int max_lin_it=10;
int lin_it=0;
/*
std::cout << "Nonlinear " << iters_used_split
<< " " << norm(res_new)
<< " " << norm(res) << std::endl;*/
/*
std::cout << "x" << std::endl;
std::cout << " " << x[0] << " " << x[1] << std::endl;
std::cout << "dF" << std::endl;
std::cout << " " << dFx_dx << " " << dFx_dy << std::endl;
std::cout << " " << dFy_dx << " " << dFy_dy << std::endl;
std::cout << "dres" << std::endl;
std::cout << " " << dres_s_dsdc[0] << " " << dres_s_dsdc[1] << std::endl;
std::cout << " " << dres_c_dsdc[0] << " " << dres_c_dsdc[1] << std::endl;
std::cout << std::endl;
*/
res_new[0]=res[0]*2;
res_new[1]=res[1]*2;
double update[2]={(res[0]*dFy_dy - res[1]*dFx_dy)/det,
(res[1]*dFx_dx - res[0]*dFy_dx)/det};
while((norm(res_new)>norm(res)) && (lin_it<max_lin_it)) {
x_new[0] = x[0] - alpha*update[0];
if(use_sc){
x_new[1] = x[1]*x[0] - alpha*update[1];
x_new[1] = (x_new[0]>0) ? x_new[1]/x_new[0] : 0.0;
}else{
x_new[1] = x[1] - alpha*update[1];
}
check_interval(x_min, x_max, x_new);
res_eq.computeResidual(x_new, res_new, mc, ff);
// std::cout << " " << res_new[0] << " " << res_new[1] << std::endl;
alpha=alpha/2.0;
lin_it=lin_it+1;
// std::cout << "Linear iterations" << lin_it << " " << norm(res_new) << std::endl;
}
if (lin_it>=max_lin_it) {
successfull_newton_step = false;
} else {
x[0] = x_new[0];
x[1] = x_new[1];
res[0] = res_new[0];
res[1] = res_new[1];
iters_used_split += 1;
successfull_newton_step = true;;
}
// std::cout << "Nonlinear " << iters_used_split << " " << norm(res) << std::endl;
}
if ((iters_used_split >= max_iters_split) || (norm(res) > tol_)) {
MESSAGE("NewtonSimple for single cell did not work in cell number " << cell);
solveSingleCellBracketing(cell);
} else {
concentration_[cell] = x[1];
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
saturation_[cell] = x[0];
fractionalflow_[cell] = ff;
mc_[cell] = mc;
}
}
void TransportModelPolymer::solveMultiCell(const int num_cells, const int* cells)
{
double max_s_change = 0.0;
double max_c_change = 0.0;
int num_iters = 0;
// Must store state variables before we start.
std::vector<double> s0(num_cells);
std::vector<double> c0(num_cells);
std::vector<double> cmax0(num_cells);
// Must set initial fractional flows etc. before we start.
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fracFlow(saturation_[cell], concentration_[cell], cmax_[cell],
cell, fractionalflow_[cell]);
computeMc(concentration_[cell], mc_[cell]);
s0[i] = saturation_[cell];
c0[i] = concentration_[cell];
cmax0[i] = cmax_[i];
}
do {
// int max_s_change_cell = -1;
// int max_c_change_cell = -1;
max_s_change = 0.0;
max_c_change = 0.0;
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
const double old_s = saturation_[cell];
const double old_c = concentration_[cell];
saturation_[cell] = s0[i];
concentration_[cell] = c0[i];
cmax_[cell] = cmax0[i];
solveSingleCell(cell);
// std::cout << "cell = " << cell << " delta s = " << saturation_[cell] - old_s << std::endl;
// if (max_s_change < std::fabs(saturation_[cell] - old_s)) {
// max_s_change_cell = cell;
// }
// if (max_c_change < std::fabs(concentration_[cell] - old_c)) {
// max_c_change_cell = cell;
// }
max_s_change = std::max(max_s_change, std::fabs(saturation_[cell] - old_s));
max_c_change = std::max(max_c_change, std::fabs(concentration_[cell] - old_c));
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
// << " in cell " << max_change_cell << std::endl;
} while (((max_s_change > tol_) || (max_c_change > tol_)) && ++num_iters < maxit_);
if (max_s_change > tol_) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
if (max_c_change > tol_) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta c = " << max_c_change);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
}
void TransportModelPolymer::fracFlow(double s, double c, double cmax,
int cell, double& ff) const
{
double dummy[2];
fracFlowBoth(s, c, cmax, cell, ff, dummy, false);
}
void TransportModelPolymer::fracFlowWithDer(double s, double c, double cmax,
int cell, double& ff,
double* dff_dsdc) const
{
fracFlowBoth(s, c, cmax, cell, ff, dff_dsdc, true);
}
void TransportModelPolymer::fracFlowBoth(double s, double c, double cmax, int cell,
double& ff, double* dff_dsdc,
bool if_with_der) const
{
double relperm[2];
double drelperm_ds[4];
double sat[2] = {s, 1 - s};
if (if_with_der) {
props_.relperm(1, sat, &cell, relperm, drelperm_ds);
} else {
props_.relperm(1, sat, &cell, relperm, 0);
}
double mob[2];
double dmob_ds[4];
double dmob_dc[2];
double dmobwat_dc;
polyprops_.effectiveMobilitiesBoth(c, cmax, visc_, relperm, drelperm_ds,
mob, dmob_ds, dmobwat_dc, if_with_der);
ff = mob[0]/(mob[0] + mob[1]);
if (if_with_der) {
dmob_dc[0] = dmobwat_dc;
dmob_dc[1] = 0.;
//dff_dsdc[0] = (dmob_ds[0]*mob[1] + dmob_ds[3]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to s
// at the moment the dmob_ds only have diagonal elements since the saturation is derivated out in effectiveMobilitiesBouth
dff_dsdc[0] = ((dmob_ds[0]-dmob_ds[2])*mob[1] - (dmob_ds[1]-dmob_ds[3])*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to s
dff_dsdc[1] = (dmob_dc[0]*mob[1] - dmob_dc[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to c
}
}
void TransportModelPolymer::computeMc(double c, double& mc) const
{
polyprops_.computeMc(c, mc);
}
void TransportModelPolymer::computeMcWithDer(double c, double& mc,
double &dmc_dc) const
{
polyprops_.computeMcWithDer(c, mc, dmc_dc);
}
TransportModelPolymer::ResidualSGrav::ResidualSGrav(const ResidualCGrav& res_c_eq,
const double c_init)
: res_c_eq_(res_c_eq),
c(c_init)
{
}
double TransportModelPolymer::ResidualSGrav::operator()(double s) const
{
return res_c_eq_.computeGravResidualS(s, c);
}
// Residual for concentration equation for gravity segregation
//
// res_c = s*(1 - dps)*c - s0*( - dps)*c0
// + dtpv*sum_{j adj i}( mc * gravmod_ij * gf_ij ).
// \TODO doc me
// where ...
// Influxes are negative, outfluxes positive.
TransportModelPolymer::ResidualCGrav::ResidualCGrav(const TransportModelPolymer& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
: tm(tmodel),
cell(cells[pos]),
s0(tm.saturation_[cell]),
c0(tm.concentration_[cell]),
cmax0(tm.cmax0_[cell]),
porosity(tm.porosity_[cell]),
dtpv(tm.dt_/tm.porevolume_[cell]),
dps(tm.polyprops_.deadPoreVol()),
rhor(tm.polyprops_.rockDensity())
{
last_s = s0;
nbcell[0] = -1;
gf[0] = 0.0;
if (pos > 0) {
nbcell[0] = cells[pos - 1];
gf[0] = -gravflux[pos - 1];
}
nbcell[1] = -1;
gf[1] = 0.0;
if (pos < int(cells.size() - 1)) {
nbcell[1] = cells[pos + 1];
gf[1] = gravflux[pos];
}
tm.polyprops_.adsorption(c0, cmax0, c_ads0);
}
double TransportModelPolymer::ResidualCGrav::operator()(double c) const
{
ResidualSGrav res_s(*this);
res_s.c = c;
int iters_used;
last_s = RootFinder::solve(res_s, last_s, 0.0, 1.0,
tm.maxit_, tm.tol_,
iters_used);
return computeGravResidualC(last_s, c);
}
double TransportModelPolymer::ResidualCGrav::computeGravResidualS(double s, double c) const
{
double mobcell[2];
tm.mobility(s, c, cell, mobcell);
double res = s - s0;
for (int nb = 0; nb < 2; ++nb) {
if (nbcell[nb] != -1) {
double m[2];
if (gf[nb] < 0.0) {
m[0] = mobcell[0];
m[1] = tm.mob_[2*nbcell[nb] + 1];
} else {
m[0] = tm.mob_[2*nbcell[nb]];
m[1] = mobcell[1];
}
if (m[0] + m[1] > 0.0) {
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
}
}
}
return res;
}
double TransportModelPolymer::ResidualCGrav::computeGravResidualC(double s, double c) const
{
double mobcell[2];
tm.mobility(s, c, cell, mobcell);
double c_ads;
tm.polyprops_.adsorption(c, cmax0, c_ads);
double res = (1 - dps)*s*c - (1 - dps)*s0*c0
+ rhor*((1.0 - porosity)/porosity)*(c_ads - c_ads0);
for (int nb = 0; nb < 2; ++nb) {
if (nbcell[nb] != -1) {
double m[2];
double mc;
if (gf[nb] < 0.0) {
m[0] = mobcell[0];
tm.computeMc(c, mc);
m[1] = tm.mob_[2*nbcell[nb] + 1];
} else {
m[0] = tm.mob_[2*nbcell[nb]];
mc = tm.mc_[nbcell[nb]];
m[1] = mobcell[1];
}
if (m[0] + m[1] > 0.0) {
res += -dtpv*gf[nb]*mc*m[0]*m[1]/(m[0] + m[1]);
}
}
}
return res;
}
double TransportModelPolymer::ResidualCGrav::lastSaturation() const
{
return last_s;
}
void TransportModelPolymer::mobility(double s, double c, int cell, double* mob) const
{
double sat[2] = { s, 1.0 - s };
double relperm[2];
props_.relperm(1, sat, &cell, relperm, 0);
polyprops_.effectiveMobilities(c, cmax0_[cell], visc_, relperm, mob);
}
void TransportModelPolymer::initGravity(const double* grav)
{
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
gravflux_.resize(nf);
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
const double delta_rho = props_.density()[0] - props_.density()[1];
for (int f = 0; f < nf; ++f) {
const int* c = &grid_.face_cells[2*f];
double gdz = 0.0;
if (c[0] != -1 && c[1] != -1) {
for (int d = 0; d < dim; ++d) {
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
}
}
gravflux_[f] *= delta_rho*gdz;
}
}
void TransportModelPolymer::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
{
const int cell = cells[pos];
ResidualCGrav res_c(*this, cells, pos, gravflux);
// Check if current state is an acceptable solution.
double res_sc[2];
res_sc[0]=res_c.computeGravResidualS(saturation_[cell], concentration_[cell]);
res_sc[1]=res_c.computeGravResidualC(saturation_[cell], concentration_[cell]);
if (norm(res_sc) < tol_) {
return;
}
const double a = 0.0;
const double b = polyprops_.cMax()*adhoc_safety_; // Add 10% to account for possible non-monotonicity of hyperbolic system.
int iters_used;
concentration_[cell] = RootFinder::solve(res_c, a, b, maxit_, tol_, iters_used);
saturation_[cell] = res_c.lastSaturation();
cmax_[cell] = std::max(cmax0_[cell], concentration_[cell]);
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
computeMc(concentration_[cell], mc_[cell]);
mobility(saturation_[cell], concentration_[cell], cell, &mob_[2*cell]);
}
int TransportModelPolymer::solveGravityColumn(const std::vector<int>& cells)
{
// Set up column gravflux.
const int nc = cells.size();
std::vector<double> col_gravflux(nc - 1);
for (int ci = 0; ci < nc - 1; ++ci) {
const int cell = cells[ci];
const int next_cell = cells[ci + 1];
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int c2 = grid_.face_cells[2*face + 1];
if (c1 == next_cell || c2 == next_cell) {
const double gf = gravflux_[face];
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
}
}
}
// Store initial saturation s0
s0_.resize(nc);
c0_.resize(nc);
for (int ci = 0; ci < nc; ++ci) {
s0_[ci] = saturation_[cells[ci]];
c0_[ci] = concentration_[cells[ci]];
}
// Solve single cell problems, repeating if necessary.
double max_sc_change = 0.0;
int num_iters = 0;
do {
max_sc_change = 0.0;
for (int ci = 0; ci < nc; ++ci) {
const int ci2 = nc - ci - 1;
double old_s[2] = { saturation_[cells[ci]],
saturation_[cells[ci2]] };
double old_c[2] = { concentration_[cells[ci]],
concentration_[cells[ci2]] };
saturation_[cells[ci]] = s0_[ci];
concentration_[cells[ci]] = c0_[ci];
solveSingleCellGravity(cells, ci, &col_gravflux[0]);
saturation_[cells[ci2]] = s0_[ci2];
concentration_[cells[ci2]] = c0_[ci2];
solveSingleCellGravity(cells, ci2, &col_gravflux[0]);
max_sc_change = std::max(max_sc_change, 0.25*(std::fabs(saturation_[cells[ci]] - old_s[0]) +
std::fabs(concentration_[cells[ci]] - old_c[0]) +
std::fabs(saturation_[cells[ci2]] - old_s[1]) +
std::fabs(concentration_[cells[ci2]] - old_c[1])));
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
} while (max_sc_change > tol_ && ++num_iters < maxit_);
if (max_sc_change > tol_) {
THROW("In solveGravityColumn(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_sc_change);
}
return num_iters + 1;
}
void TransportModelPolymer::solveGravity(const std::vector<std::vector<int> >& columns,
const double* porevolume,
const double dt,
std::vector<double>& saturation,
std::vector<double>& concentration,
std::vector<double>& cmax)
{
// initialize variables.
porevolume_ = porevolume;
dt_ = dt;
toWaterSat(saturation, saturation_);
concentration_ = &concentration[0];
cmax_ = &cmax[0];
const int nc = grid_.number_of_cells;
cmax0_.resize(nc);
std::copy(cmax.begin(), cmax.end(), &cmax0_[0]);
// Initialize mobilities.
mob_.resize(2*nc);
for (int cell = 0; cell < nc; ++cell) {
mobility(saturation_[cell], concentration_[cell], cell, &mob_[2*cell]);
}
// Solve on all columns.
int num_iters = 0;
// std::cout << "Gauss-Seidel column solver # columns: " << columns.size() << std::endl;
for (std::vector<std::vector<int> >::size_type i = 0; i < columns.size(); i++) {
// std::cout << "==== new column" << std::endl;
num_iters += solveGravityColumn(columns[i]);
}
std::cout << "Gauss-Seidel column solver average iterations: "
<< double(num_iters)/double(columns.size()) << std::endl;
toBothSat(saturation_, saturation);
}
void TransportModelPolymer::scToc(const double* x, double* x_c) const {
x_c[0] = x[0];
if (x[0] < 1e-2*tol_) {
x_c[1] = 0.5*polyprops_.cMax();
} else {
x_c[1] = x[1]/x[0];
}
}
} // namespace Opm
namespace
{
bool check_interval(const double* xmin, const double* xmax, double* x) {
bool test = false;
if (x[0] < xmin[0]) {
test = true;
x[0] = xmin[0];
} else if (x[0] > xmax[0]) {
test = true;
x[0] = xmax[0];
}
if (x[1] < xmin[1]) {
test = true;
x[1] = xmin[1];
} else if (x[1] > xmax[1]) {
test = true;
x[1] = xmax[1];
}
return test;
}
CurveInSCPlane::CurveInSCPlane()
{
}
// Setup the curve (see comment above).
// The curve is parametrized by t in [0, t_max], t_out is equal to t when the curve hits the bounding
// rectangle. x_out=(s_out, c_out) denotes the values of s and c at that point.
void CurveInSCPlane::setup(const double* x, const double* direction,
const double* end_point, const double* x_min,
const double* x_max, const double tol,
double& t_max_out, double& t_out_out)
{
x_[0] = x[0];
x_[1] = x[1];
x_max_[0] = x_max[0];
x_max_[1] = x_max[1];
x_min_[0] = x_min[0];
x_min_[1] = x_min[1];
direction_[0] = direction[0];
direction_[1] = direction[1];
end_point_[0] = end_point[0];
end_point_[1] = end_point[1];
const double size_direction = std::abs(direction_[0]) + std::abs(direction_[1]);
if (size_direction < tol) {
direction_[0] = end_point_[0]-x_[0];
direction_[1] = end_point_[1]-x_[1];
} else if ((end_point_[0]-x_[0])*direction_[0] + (end_point_[1]-x_[1])*direction_[1] < 0) {
direction_[0] *= -1.0;
direction_[1] *= -1.0;
}
bool t0_exists = true;
double t0 = 0; // dummy default value (so that compiler does not complain).
if (direction_[0] > 0) {
t0 = (x_max_[0] - x_[0])/direction_[0];
} else if (direction_[0] < 0) {
t0 = (x_min_[0] - x_[0])/direction_[0];
} else {
t0_exists = false;
}
bool t1_exists = true;
double t1 = 0; // dummy default value.
if (direction_[1] > 0) {
t1 = (x_max_[1] - x_[1])/direction_[1];
} else if (direction_[1] < 0) {
t1 = (x_min_[1] - x_[1])/direction_[1];
} else {
t1_exists = false;
}
if (t0_exists) {
if (t1_exists) {
t_out_ = std::min(t0, t1);
} else {
t_out_ = t0;
}
} else if (t1_exists) {
t_out_ = t1;
} else {
THROW("Direction illegal: is a zero vector.");
}
x_out_[0] = x_[0] + t_out_*direction_[0];
x_out_[1] = x_[1] + t_out_*direction_[1];
t_max_ = t_out_ + 1;
t_max_out = t_max_;
t_out_out = t_out_;
}
// Compute x=(s,c) for a given t (t is the parameter for the piecewise linear curve)
void CurveInSCPlane::computeXOfT(double* x_of_t, const double t) const {
if (t <= t_out_) {
x_of_t[0] = x_[0] + t*direction_[0];
x_of_t[1] = x_[1] + t*direction_[1];
} else {
x_of_t[0] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[0] + end_point_[0]*(t - t_out_));
x_of_t[1] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[1] + end_point_[1]*(t - t_out_));
}
}
ResSOnCurve::ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq)
: res_eq_(res_eq)
{
}
double ResSOnCurve::operator()(const double t) const
{
double x_of_t[2];
double x_c[2];
curve.computeXOfT(x_of_t, t);
res_eq_.tm.scToc(x_of_t, x_c);
return res_eq_.computeResidualS(x_c);
}
ResCOnCurve::ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq)
: res_eq_(res_eq)
{
}
double ResCOnCurve::operator()(const double t) const
{
double x_of_t[2];
double x_c[2];
curve.computeXOfT(x_of_t, t);
res_eq_.tm.scToc(x_of_t, x_c);
return res_eq_.computeResidualC(x_c);
}
bool solveNewtonStepSC(const double* xx, const Opm::TransportModelPolymer::ResidualEquation& res_eq,
const double* res, double* x_new) {
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double dx=1e-8;
double x[2];
if(!(x[0]>0)){
x[0] = dx;
x[1] = 0;
} else {
x[0] = xx[0];
x[1] = xx[1];
}
res_eq.computeJacobiRes(x, dres_s_dsdc, dres_c_dsdc);
double dFx_dx=(dres_s_dsdc[0]-x[1]*dres_s_dsdc[1]);
double dFx_dy= (dres_s_dsdc[1]/x[0]);
double dFy_dx=(dres_c_dsdc[0]-x[1]*dres_c_dsdc[1]);
double dFy_dy= (dres_c_dsdc[1]/x[0]);
double det = dFx_dx*dFy_dy - dFy_dx*dFx_dy;
if (std::abs(det) < 1e-8) {
return false;
} else {
x_new[0] = x[0] - (res[0]*dFy_dy - res[1]*dFx_dy)/det;
x_new[1] = x[1]*x[0] - (res[1]*dFx_dx - res[0]*dFy_dx)/det;
x_new[1] = (x_new[0]>0) ? x_new[1]/x_new[0] : 0.0;
return true;
}
}
bool solveNewtonStepC(const double* xx, const Opm::TransportModelPolymer::ResidualEquation& res_eq,
const double* res, double* x_new) {
double dres_s_dsdc[2];
double dres_c_dsdc[2];
double dx=1e-8;
double x[2];
if(!(x[0]>0)){
x[0] = dx;
x[1] = 0;
} else {
x[0] = xx[0];
x[1] = xx[1];
}
res_eq.computeJacobiRes(x, dres_s_dsdc, dres_c_dsdc);
double det = dres_s_dsdc[0]*dres_c_dsdc[1] - dres_c_dsdc[0]*dres_s_dsdc[1];
if (std::abs(det) < 1e-8) {
return false;
} else {
x_new[0] = x[0] - (res[0]*dres_c_dsdc[1] - res[1]*dres_s_dsdc[1])/det;
x_new[1] = x[1] - (res[1]*dres_s_dsdc[0] - res[0]*dres_c_dsdc[0])/det;
return true;
}
}
} // Anonymous namespace
/* Local Variables: */
/* c-basic-offset:4 */
/* End: */