opm-simulators/opm/core/simulator/initStateEquil.hpp
Bård Skaflestad 311ac78340 Add a layer of glue to extract data from deck
This is a work in progress.
2014-01-23 10:16:49 +01:00

711 lines
25 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_INITSTATEEQUIL_HEADER_INCLUDED
#define OPM_INITSTATEEQUIL_HEADER_INCLUDED
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <opm/core/utility/Units.hpp>
#include <array>
#include <cassert>
#include <utility>
#include <vector>
/**
* \file
* Facilities for an ECLIPSE-style equilibration-based
* initialisation scheme (keyword 'EQUIL').
*/
struct UnstructuredGrid;
namespace Opm
{
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace equil {
template <class Props>
class DensityCalculator;
/**
* Facility for calculating phase densities based on the
* BlackoilPropertiesInterface.
*
* Implements the crucial <CODE>operator()(p,svol)</CODE>
* function that is expected by class EquilReg.
*/
template <>
class DensityCalculator< BlackoilPropertiesInterface > {
public:
/**
* Constructor.
*
* \param[in] props Implementation of the
* BlackoilPropertiesInterface.
*
* \param[in] c Single cell used as a representative cell
* in a PVT region.
*/
DensityCalculator(const BlackoilPropertiesInterface& props,
const int c)
: props_(props)
, c_(1, c)
{
}
/**
* Compute phase densities of all phases at phase point
* given by (pressure, surface volume) tuple.
*
* \param[in] p Fluid pressure.
*
* \param[in] z Surface volumes of all phases.
*
* \return Phase densities at phase point.
*/
std::vector<double>
operator()(const double p,
const std::vector<double>& z) const
{
const int np = props_.numPhases();
std::vector<double> A(np * np, 0);
assert (z.size() == std::vector<double>::size_type(np));
double* dAdp = 0;
props_.matrix(1, &p, &z[0], &c_[0], &A[0], dAdp);
std::vector<double> rho(np, 0.0);
props_.density(1, &A[0], &rho[0]);
return rho;
}
private:
const BlackoilPropertiesInterface& props_;
const std::vector<int> c_;
};
/**
* Types and routines relating to phase mixing in
* equilibration calculations.
*/
namespace miscibility {
/**
* Type that implements "no phase mixing" policy.
*/
struct NoMixing {
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press. In "no mixing
* policy", this is identically zero.
*/
double
operator()(const double /* depth */,
const double /* press */) const
{
return 0.0;
}
};
/**
* Type that implements "dissolved gas-oil ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RSVD'.
*/
class RsVD {
public:
/**
* Constructor.
*
* \param[in] depth Depth nodes.
* \param[in] rs Dissolved gas-oil ratio at @c depth.
*/
RsVD(const std::vector<double>& depth,
const std::vector<double>& rs)
: depth_(depth)
, rs_(rs)
{
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double /* press */) const
{
return linearInterpolation(depth_, rs_, depth);
}
private:
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rs_; /**< Dissolved gas-oil ratio */
};
} // namespace miscibility
/**
* Forward and reverse mappings between cells and
* regions/partitions (e.g., the ECLIPSE-style 'SATNUM',
* 'PVTNUM', or 'EQUILNUM' arrays).
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through
* operator[]() as well as inner types
* 'value_type', 'size_type', and
* 'const_iterator'.
*/
template < class Region = std::vector<int> >
class RegionMapping {
public:
/**
* Constructor.
*
* \param[in] reg Forward region mapping, restricted to
* active cells only.
*/
explicit
RegionMapping(const Region& reg)
: reg_(reg)
{
rev_.init(reg_);
}
/**
* Type of forward (cell-to-region) mapping result.
* Expected to be an integer.
*/
typedef typename Region::value_type RegionId;
/**
* Type of reverse (region-to-cell) mapping (element)
* result.
*/
typedef typename Region::size_type CellId;
/**
* Type of reverse region-to-cell range bounds and
* iterators.
*/
typedef typename std::vector<CellId>::const_iterator CellIter;
/**
* Range of cells. Result from reverse (region-to-cell)
* mapping.
*/
class CellRange {
public:
/**
* Constructor.
*
* \param[in] b Beginning of range.
* \param[in] e One past end of range.
*/
CellRange(const CellIter b,
const CellIter e)
: b_(b), e_(e)
{}
/**
* Read-only iterator on cell ranges.
*/
typedef CellIter const_iterator;
/**
* Beginning of cell range.
*/
const_iterator begin() const { return b_; }
/**
* One past end of cell range.
*/
const_iterator end() const { return e_; }
private:
const_iterator b_;
const_iterator e_;
};
/**
* Number of declared regions in cell-to-region mapping.
*/
RegionId
numRegions() const { return RegionId(rev_.p.size()) - 1; }
/**
* Compute region number of given active cell.
*
* \param[in] c Active cell
* \return Region to which @c c belongs.
*/
RegionId
region(const CellId c) const { return reg_[c]; }
/**
* Extract active cells in particular region.
*
* \param[in] r Region number
* \returns Range of active cells in region @c r.
*/
CellRange
cells(const RegionId r) const {
const RegionId i = r - rev_.low;
return CellRange(rev_.c.begin() + rev_.p[i + 0],
rev_.c.begin() + rev_.p[i + 1]);
}
private:
/**
* Copy of forward region mapping (cell-to-region).
*/
Region reg_;
/**
* Reverse mapping (region-to-cell).
*/
struct {
typedef typename std::vector<CellId>::size_type Pos;
std::vector<Pos> p; /**< Region start pointers */
std::vector<CellId> c; /**< Region cells */
RegionId low; /**< Smallest region number */
/**
* Compute reverse mapping. Standard linear insertion
* sort algorithm.
*/
void
init(const Region& reg)
{
typedef typename Region::const_iterator CI;
const std::pair<CI,CI>
m = std::minmax_element(reg.begin(), reg.end());
low = *m.first;
const typename Region::size_type
n = *m.second - low + 1;
p.resize(n + 1); std::fill(p.begin(), p.end(), Pos(0));
for (CellId i = 0, nc = reg.size(); i < nc; ++i) {
p[ reg[i] - low + 1 ] += 1;
}
for (typename std::vector<Pos>::size_type
i = 1, sz = p.size(); i < sz; ++i) {
p[0] += p[i];
p[i] = p[0] - p[i];
}
assert (p[0] ==
static_cast<typename Region::size_type>(reg.size()));
c.resize(reg.size());
for (CellId i = 0, nc = reg.size(); i < nc; ++i) {
c[ p[ reg[i] - low + 1 ] ++ ] = i;
}
p[0] = 0;
}
} rev_; /**< Reverse mapping instance */
};
/**
* Equilibration record.
*
* Layout and contents inspired by first six items of
* ECLIPSE's 'EQUIL' records. This is the minimum amount of
* input data needed to define phase pressures in an
* equilibration region.
*
* Data consists of three pairs of depth and pressure values:
* 1. main
* - @c depth Main datum depth.
* - @c press Pressure at datum depth.
*
* 2. woc
* - @c depth Depth of water-oil contact
* - @c press water-oil capillary pressure at water-oil contact.
* Capillary pressure defined as "P_oil - P_water".
*
* 3. goc
* - @c depth Depth of gas-oil contact
* - @c press Gas-oil capillary pressure at gas-oil contact.
* Capillary pressure defined as "P_gas - P_oil".
*/
struct EquilRecord {
struct {
double depth;
double press;
} main, woc, goc;
};
/**
* Aggregate information base of an equilibration region.
*
* Provides inquiry methods for retrieving depths of contacs
* and pressure values as well as a means of calculating fluid
* densities, dissolved gas-oil ratio and vapourised oil-gas
* ratios.
*
* \tparam DensCalc Type that provides access to a phase
* density calculation facility. Must implement an operator()
* declared as
* <CODE>
* std::vector<double>
* operator()(const double press,
* const std::vector<double>& svol )
* </CODE>
* that calculates the phase densities of all phases in @c
* svol at fluid pressure @c press.
*
* \tparam RS Type that provides access to a calculator for
* (initial) dissolved gas-oil ratios as a function of depth
* and (oil) pressure. Must implement an operator() declared
* as
* <CODE>
* double
* operator()(const double depth,
* const double press)
* </CODE>
* that calculates the dissolved gas-oil ratio at depth @c
* depth and (oil) pressure @c press.
*
* \tparam RV Type that provides access to a calculator for
* (initial) vapourised oil-gas ratios as a function of depth
* and (gas) pressure. Must implement an operator() declared
* as
* <CODE>
* double
* operator()(const double depth,
* const double press)
* </CODE>
* that calculates the vapourised oil-gas ratio at depth @c
* depth and (gas) pressure @c press.
*/
template <class DensCalc,
class RS = miscibility::NoMixing,
class RV = miscibility::NoMixing>
class EquilReg {
public:
/**
* Constructor.
*
* \param[in] rec Equilibration data of current region.
* \param[in] density Density calculator of current region.
* \param[in] rs Calculator of dissolved gas-oil ratio.
* \param[in] rv Calculator of vapourised oil-gas ratio.
* \param[in] pu Summary of current active phases.
*/
EquilReg(const EquilRecord& rec,
const DensCalc& density,
const RS& rs,
const RV& rv,
const PhaseUsage& pu)
: rec_ (rec)
, density_(density)
, rs_ (rs)
, rv_ (rv)
, pu_ (pu)
{
}
/**
* Type of density calculator.
*/
typedef DensCalc CalcDensity;
/**
* Type of dissolved gas-oil ratio calculator.
*/
typedef RS CalcDissolution;
/**
* Type of vapourised oil-gas ratio calculator.
*/
typedef RV CalcEvaporation;
/**
* Datum depth in current region
*/
double datum() const { return this->rec_.main.depth; }
/**
* Pressure at datum depth in current region.
*/
double pressure() const { return this->rec_.main.press; }
/**
* Depth of water-oil contact.
*/
double zwoc() const { return this->rec_.woc .depth; }
/**
* water-oil capillary pressure at water-oil contact.
*
* \return P_o - P_w at WOC.
*/
double pcow_woc() const { return this->rec_.woc .press; }
/**
* Depth of gas-oil contact.
*/
double zgoc() const { return this->rec_.goc .depth; }
/**
* Gas-oil capillary pressure at gas-oil contact.
*
* \return P_g - P_o at GOC.
*/
double pcgo_goc() const { return this->rec_.goc .press; }
/**
* Retrieve phase density calculator of current region.
*/
const CalcDensity&
densityCalculator() const { return this->density_; }
/**
* Retrieve dissolved gas-oil ratio calculator of current
* region.
*/
const CalcDissolution&
dissolutionCalculator() const { return this->rs_; }
/**
* Retrieve vapourised oil-gas ratio calculator of current
* region.
*/
const CalcEvaporation&
evaporationCalculator() const { return this->rv_; }
/**
* Retrieve active fluid phase summary.
*/
const PhaseUsage&
phaseUsage() const { return this->pu_; }
private:
EquilRecord rec_; /**< Equilibration data */
DensCalc density_; /**< Density calculator */
RS rs_; /**< RS calculator */
RV rv_; /**< RV calculator */
PhaseUsage pu_; /**< Active phase summary */
};
/**
* Compute initial phase pressures by means of equilibration.
*
* This function uses the information contained in an
* equilibration record (i.e., depths and pressurs) as well as
* a density calculator and related data to vertically
* integrate the phase pressure ODE
* \f[
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
* \rho_{\alpha}(z,p_{\alpha})\cdot g
* \f]
* in which \f$\rho_{\alpha}$ denotes the fluid density of
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
* corresponding phase pressure, \f$z\f$ is the depth and
* \f$g\f$ is the acceleration due to gravity (assumed
* directed downwords, in the positive \f$z\f$ direction).
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] G Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] grav Acceleration of gravity.
*
* \return Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
*/
template <class Region, class CellRange>
std::vector< std::vector<double> >
phasePressures(const UnstructuredGrid& G,
const Region& reg,
const CellRange& cells,
const double grav = unit::gravity);
namespace DeckDependent {
inline
std::vector<EquilRecord>
getEquil(const EclipseGridParser& deck)
{
if (deck.hasField("EQUIL")) {
const EQUIL& eql = deck.getEQUIL();
typedef std::vector<EquilLine>::size_type sz_t;
const sz_t nrec = eql.equil.size();
std::vector<EquilRecord> ret;
ret.reserve(nrec);
for (sz_t r = 0; r < nrec; ++r) {
const EquilLine& rec = eql.equil[r];
EquilRecord record =
{
{ rec.datum_depth_ ,
rec.datum_depth_pressure_ }
,
{ rec.water_oil_contact_depth_ ,
rec.oil_water_cap_pressure_ }
,
{ rec.gas_oil_contact_depth_ ,
rec.gas_oil_cap_pressure_ }
};
ret.push_back(record);
}
return ret;
}
else {
OPM_THROW(std::domain_error,
"Deck does not provide equilibration data.");
}
}
inline
std::vector<int>
equilnum(const EclipseGridParser& deck,
const UnstructuredGrid& G )
{
std::vector<int> eqlnum;
if (deck.hasField("EQLNUM")) {
eqlnum = deck.getIntegerValue("EQLNUM");
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(G.number_of_cells, 0);
}
return eqlnum;
}
template <class InputDeck>
class PhasePressureComputer;
template <>
class PhasePressureComputer<Opm::EclipseGridParser> {
public:
PhasePressureComputer(const BlackoilPropertiesInterface& props,
const EclipseGridParser& deck ,
const UnstructuredGrid& G )
: pp_(props.numPhases(),
std::vector<double>(G.number_of_cells))
{
const std::vector<EquilRecord> rec = getEquil(deck);
const RegionMapping<> eqlmap(equilnum(deck, G));
calcII(eqlmap, rec, props, G);
}
typedef std::vector<double> PVal;
typedef std::vector<PVal> PPress;
const PPress& press() const { return pp_; }
private:
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
typedef EquilReg<RhoCalc> EqReg;
PPress pp_;
template <class RMap>
void
calcII(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
const Opm::BlackoilPropertiesInterface& props,
const UnstructuredGrid& G )
{
typedef miscibility::NoMixing NoMix;
for (typename RMap::RegionId
r = 0, nr = reg.numRegions();
r < nr; ++r)
{
const typename RMap::CellRange cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc, NoMix(), NoMix(),
props.phaseUsage());
const PPress& res = phasePressures(G, eqreg, cells);
for (int p = 0, np = props.numPhases(); p < np; ++p) {
PVal& d = pp_[p];
PVal::const_iterator s = res[p].begin();
for (typename RMap::CellRange::const_iterator
c = cells.begin(),
e = cells.end();
c != e; ++c, ++s)
{
d[*c] = *s;
}
}
}
}
};
} // namespace DeckDependent
} // namespace equil
} // namespace Opm
#include <opm/core/simulator/initStateEquil_impl.hpp>
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED