opm-simulators/tests/test_wellmodel.cpp
Tor Harald Sandve 054361d537 Make it possible to combine solvent and RESV
Compute the conversion factor for solvent using the RateConverter.hpp
2017-11-22 15:21:21 +01:00

231 lines
9.2 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#if HAVE_DYNAMIC_BOOST_TEST
#define BOOST_TEST_DYN_LINK
#endif
#define BOOST_TEST_MODULE WellModelTest
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <boost/test/unit_test.hpp>
#include <boost/filesystem.hpp>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/createGlobalCellArray.hpp>
#include <opm/autodiff/GridInit.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/autodiff/StandardWell.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
// maybe should just include BlackoilModelEbos.hpp
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
}
}
using StandardWell = Opm::StandardWell<TTAG(EclFlowProblem)>;
struct SetupTest {
using Grid = UnstructuredGrid;
using GridInit = Opm::GridInit<Grid>;
SetupTest ()
{
Opm::ParseContext parse_context;
Opm::Parser parser;
auto deck = parser.parseFile("TESTWELLMODEL.DATA", parse_context);
ecl_state.reset(new Opm::EclipseState(deck , parse_context) );
{
const Opm::TableManager table ( deck );
const Opm::Eclipse3DProperties eclipseProperties ( deck , table, ecl_state->getInputGrid());
schedule.reset( new Opm::Schedule(deck, ecl_state->getInputGrid(), eclipseProperties, Opm::Phases(true, true, true), parse_context ));
}
// Create grid.
const std::vector<double>& porv =
ecl_state->get3DProperties().getDoubleGridProperty("PORV").getData();
std::unique_ptr<GridInit> grid_init(new GridInit(*ecl_state, porv));
const Grid& grid = grid_init->grid();
// Create material law manager.
std::vector<int> compressed_to_cartesianIdx;
Opm::createGlobalCellArray(grid, compressed_to_cartesianIdx);
// dummy_dynamic_list_econ_lmited
const Opm::DynamicListEconLimited dummy_dynamic_list;
current_timestep = 0;
// Create wells.
wells_manager.reset(new Opm::WellsManager(*ecl_state,
*schedule,
current_timestep,
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::dimensions(grid),
Opm::UgGridHelpers::cell2Faces(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
dummy_dynamic_list,
false,
std::unordered_set<std::string>() ) );
};
std::unique_ptr<const Opm::WellsManager> wells_manager;
std::unique_ptr<const Opm::EclipseState> ecl_state;
std::unique_ptr<const Opm::Schedule> schedule;
int current_timestep;
};
BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
SetupTest setup_test;
const Wells* wells = setup_test.wells_manager->c_wells();
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
const Opm::Well* well = wells_ecl[1];
const Opm::BlackoilModelParameters param;
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::FluidSystems::BlackOil<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
const int pvtIdx = 0;
BOOST_CHECK_THROW( StandardWell( well, -1, wells, param, *rateConverter, pvtIdx), std::invalid_argument);
BOOST_CHECK_THROW( StandardWell( nullptr, 4, wells, param , *rateConverter, pvtIdx), std::invalid_argument);
BOOST_CHECK_THROW( StandardWell( well, 4, nullptr, param , *rateConverter, pvtIdx), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(TestBehavoir) {
SetupTest setup_test;
const Wells* wells_struct = setup_test.wells_manager->c_wells();
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
const int current_timestep = setup_test.current_timestep;
std::vector<std::unique_ptr<const StandardWell> > wells;
{
const int nw = wells_struct ? (wells_struct->number_of_wells) : 0;
const Opm::BlackoilModelParameters param;
for (int w = 0; w < nw; ++w) {
const std::string well_name(wells_struct->name[w]);
size_t index_well = 0;
for (; index_well < wells_ecl.size(); ++index_well) {
if (well_name == wells_ecl[index_well]->name()) {
break;
}
}
// we should always be able to find the well in wells_ecl
BOOST_CHECK(index_well != wells_ecl.size());
// For the conversion between the surface volume rate and resrevoir voidage rate
typedef Opm::FluidSystems::BlackOil<double> FluidSystem;
using RateConverterType = Opm::RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// Compute reservoir volumes for RESV controls.
Opm::PhaseUsage phaseUsage;
std::unique_ptr<RateConverterType> rateConverter;
// Compute reservoir volumes for RESV controls.
rateConverter.reset(new RateConverterType (phaseUsage,
std::vector<int>(10, 0)));
const int pvtIdx = 0;
wells.emplace_back(new StandardWell(wells_ecl[index_well], current_timestep, wells_struct, param, *rateConverter, pvtIdx) );
}
}
// first well, it is a production well from the deck
{
const auto& well = wells[0];
BOOST_CHECK_EQUAL(well->name(), "PROD1");
BOOST_CHECK(well->wellType() == PRODUCER);
BOOST_CHECK(well->numEq == 3);
BOOST_CHECK(well->numWellEq == 3);
const auto& wc = well->wellControls();
const int ctrl_num = well_controls_get_num(wc);
BOOST_CHECK(ctrl_num > 0);
const auto& control = well_controls_get_current(wc);
BOOST_CHECK(control >= 0);
// GAS RATE CONTROL
const auto& distr = well_controls_iget_distr(wc, control);
BOOST_CHECK(distr[0] == 0.);
BOOST_CHECK(distr[1] == 0.);
BOOST_CHECK(distr[2] == 1.);
}
// second well, it is the injection well from the deck
{
const auto& well = wells[1];
BOOST_CHECK_EQUAL(well->name(), "INJE1");
BOOST_CHECK(well->wellType() == INJECTOR);
BOOST_CHECK(well->numEq == 3);
BOOST_CHECK(well->numWellEq == 3);
const auto& wc = well->wellControls();
const int ctrl_num = well_controls_get_num(wc);
BOOST_CHECK(ctrl_num > 0);
const auto& control = well_controls_get_current(wc);
BOOST_CHECK(control >= 0);
// WATER RATE CONTROL
const auto& distr = well_controls_iget_distr(wc, control);
BOOST_CHECK(distr[0] == 1.);
BOOST_CHECK(distr[1] == 0.);
BOOST_CHECK(distr[2] == 0.);
}
}