opm-simulators/opm/autodiff/BlackoilPressureModel.hpp
Andreas Lauser 5410d97701 pass the simulation timer object instead of the time step size
models may need a more detailed picture of where they are in the
simulation. Note that since the timer objects are available at every
call site, this is also not a very deep change.
2016-07-12 15:55:12 +02:00

334 lines
13 KiB
C++

/*
Copyright 2015, 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPRESSUREMODEL_HEADER_INCLUDED
#define OPM_BLACKOILPRESSUREMODEL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilModelBase.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/core/simulator/SimulatorTimerInterface.hpp>
#include <algorithm>
namespace Opm {
/// A model implementation for the pressure equation in three-phase black oil.
///
/// The model is based on the normal black oil model.
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
template<class Grid, class WellModel>
class BlackoilPressureModel : public BlackoilModelBase<Grid, WellModel, BlackoilPressureModel<Grid, WellModel> >
{
public:
typedef BlackoilModelBase<Grid, WellModel, BlackoilPressureModel<Grid, WellModel> > Base;
friend Base;
typedef typename Base::ReservoirState ReservoirState;
typedef typename Base::WellState WellState;
typedef typename Base::SolutionState SolutionState;
typedef typename Base::V V;
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells_arg well structure
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
BlackoilPressureModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const StandardWells& std_wells,
const NewtonIterationBlackoilInterface& linsolver,
Opm::EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
: Base(param, grid, fluid, geo, rock_comp_props, std_wells, linsolver,
eclState, has_disgas, has_vapoil, terminal_output),
state0_(3),
max_dp_rel_(std::numeric_limits<double>::infinity()),
scaling_{ ADB::null(), ADB::null(), ADB::null() }
{
}
/// Called once per timestep.
void prepareStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
const WellState& well_state)
{
asImpl().wellModel().setStoreWellPerforationFluxesFlag(true);
Base::prepareStep(timer, reservoir_state, well_state);
max_dp_rel_ = std::numeric_limits<double>::infinity();
state0_ = asImpl().variableState(reservoir_state, well_state);
asImpl().makeConstantState(state0_);
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const
{
// We make a reduced residual object which just
// contains the pressure residual.
// TODO: directly contruct that object in residual_ instead.
const int n1 = residual_.material_balance_eq[0].size();
const int n2 = residual_.well_flux_eq.size() + residual_.well_eq.size();
const int n_full = residual_.sizeNonLinear();
const auto& mb = residual_.material_balance_eq;
const auto& fe = residual_.well_flux_eq;
const auto& we = residual_.well_eq;
LinearisedBlackoilResidual pressure_res = {
{
// TODO: handle general 2-phase etc.
ADB::function(mb[0].value(), { mb[0].derivative()[0], mb[0].derivative()[3], mb[0].derivative()[4] })
},
ADB::function(fe.value(), { fe.derivative()[0], fe.derivative()[3], fe.derivative()[4] }),
ADB::function(we.value(), { we.derivative()[0], we.derivative()[3], we.derivative()[4] }),
residual_.matbalscale,
residual_.singlePrecision
};
assert(pressure_res.sizeNonLinear() == n1 + n2);
V dx_pressure = linsolver_.computeNewtonIncrement(pressure_res);
assert(dx_pressure.size() == n1 + n2);
V dx_full = V::Zero(n_full);
dx_full.topRows(n1) = dx_pressure.topRows(n1);
dx_full.bottomRows(n2) = dx_pressure.bottomRows(n2);
return dx_full;
}
using Base::numPhases;
using Base::numMaterials;
using Base::wellModel;
protected:
using Base::asImpl;
using Base::linsolver_;
using Base::residual_;
using Base::rq_;
using Base::grid_;
using Base::ops_;
using Base::has_vapoil_;
using Base::has_disgas_;
SolutionState state0_;
double max_dp_rel_ = std::numeric_limits<double>::infinity();
ADB scaling_[3] = { ADB::null(), ADB::null(), ADB::null() };
IterationReport
assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
IterationReport iter_report = Base::assemble(reservoir_state, well_state, initial_assembly);
if (initial_assembly) {
}
// Compute pressure residual.
ADB pressure_residual = ADB::constant(V::Zero(residual_.material_balance_eq[0].size()));
for (int phase = 0; phase < numPhases(); ++phase) {
pressure_residual += residual_.material_balance_eq[phase] * scaling_[phase];
}
residual_.material_balance_eq[0] = pressure_residual; // HACK
// Compute total reservoir volume flux.
const int n = rq_[0].mflux.size();
V flux = V::Zero(n);
for (int phase = 0; phase < numPhases(); ++phase) {
UpwindSelector<double> upwind(grid_, ops_, rq_[phase].dh.value());
flux += rq_[phase].mflux.value() / upwind.select(rq_[phase].b.value());
}
// Storing the fluxes in the assemble() method is a bit of
// a hack, but alternatives either require a more
// significant redesign of the base class or are
// inefficient.
ReservoirState& s = const_cast<ReservoirState&>(reservoir_state);
s.faceflux().resize(n);
std::copy_n(flux.data(), n, s.faceflux().begin());
if (asImpl().localWellsActive()) {
const V& wflux = asImpl().wellModel().getStoredWellPerforationFluxes();
assert(int(well_state.perfRates().size()) == wflux.size());
std::copy_n(wflux.data(), wflux.size(), well_state.perfRates().begin());
}
return iter_report;
}
SolutionState
variableState(const ReservoirState& x,
const WellState& xw) const
{
// As Base::variableState(), except making Sw and Xvar constants.
std::vector<V> vars0 = asImpl().variableStateInitials(x, xw);
std::vector<ADB> vars = ADB::variables(vars0);
const std::vector<int> indices = asImpl().variableStateIndices();
vars[indices[Sw]] = ADB::constant(vars[indices[Sw]].value());
vars[indices[Xvar]] = ADB::constant(vars[indices[Xvar]].value());
// OpmLog::debug("Injector pressure: " + std::to_string(vars[indices[Bhp]].value()[1]));
return asImpl().variableStateExtractVars(x, indices, vars);
}
void computeAccum(const SolutionState& state,
const int aix )
{
if (aix == 0) {
Base::computeAccum(state0_, aix);
} else {
Base::computeAccum(state, aix);
}
}
void assembleMassBalanceEq(const SolutionState& state)
{
Base::assembleMassBalanceEq(state);
// Compute the scaling factors.
// Scaling factors are:
// 1/bw, 1/bo - rs/bg, 1/bg - rv/bo
assert(numPhases() == 3);
assert(numMaterials() == 3);
V one = V::Constant(state.pressure.size(), 1.0);
scaling_[Water] = one / rq_[Water].b;
scaling_[Oil] = one / rq_[Oil].b - state.rs / rq_[Gas].b;
scaling_[Gas] = one / rq_[Gas].b - state.rv / rq_[Oil].b;
if (has_disgas_ && has_vapoil_) {
ADB r_factor = one / (one - state.rs * state.rv);
scaling_[Oil] = r_factor * scaling_[Oil];
scaling_[Gas] = r_factor * scaling_[Gas];
}
// @TODO: multiply the oil and gas scale by 1/(1-rs*rv)?
// OpmLog::debug("gas scaling: " + std::to_string(scaling_[2].value()[0]));
}
void updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
// Naively, rs and rv can get overwritten, so we
// avoid that by storing.
std::vector<double> rs_old = reservoir_state.gasoilratio();
std::vector<double> rv_old = reservoir_state.rv();
auto hs_old = reservoir_state.hydroCarbonState();
auto phasecond_old = Base::phaseCondition_;
auto isRs_old = Base::isRs_;
auto isRv_old = Base::isRv_;
auto isSg_old = Base::isSg_;
// Compute the pressure range.
const auto minmax_iters = std::minmax_element(reservoir_state.pressure().begin(),
reservoir_state.pressure().end());
const double range = *minmax_iters.second - *minmax_iters.first;
// Use the base class' updateState().
Base::updateState(dx, reservoir_state, well_state);
// Compute relative change.
max_dp_rel_ = dx.head(reservoir_state.pressure().size()).abs().maxCoeff() / range;
// Restore rs and rv, also various state flags.
reservoir_state.gasoilratio() = rs_old;
reservoir_state.rv() = rv_old;
reservoir_state.hydroCarbonState() = hs_old;
Base::phaseCondition_ = phasecond_old;
Base::isRs_ = isRs_old;
Base::isRv_ = isRv_old;
Base::isSg_ = isSg_old;
}
bool getConvergence(const SimulatorTimerInterface& /* timer */, const int iteration)
{
const double tol_p = 1e-11;
const double resmax = residual_.material_balance_eq[0].value().abs().maxCoeff();
if (Base::terminalOutputEnabled()) {
// Only rank 0 does print to std::cout
if (iteration == 0) {
OpmLog::info("\nIter Res(p) Delta(p)\n");
}
std::ostringstream os;
os.precision(3);
os.setf(std::ios::scientific);
os << std::setw(4) << iteration;
os << std::setw(11) << resmax;
os << std::setw(11) << max_dp_rel_;
OpmLog::info(os.str());
}
return resmax < tol_p;
}
};
/// Providing types by template specialisation of ModelTraits for BlackoilPressureModel.
template <class Grid, class WellModel>
struct ModelTraits< BlackoilPressureModel<Grid, WellModel> >
{
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
typedef DefaultBlackoilSolutionState SolutionState;
};
} // namespace Opm
#endif // OPM_BLACKOILPRESSUREMODEL_HEADER_INCLUDED