mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-11 19:35:33 -06:00
1084 lines
40 KiB
C++
1084 lines
40 KiB
C++
/*
|
|
Copyright (C) 2014 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::EclPeacemanWell
|
|
*/
|
|
#ifndef EWOMS_ECL_PEACEMAN_WELL_HH
|
|
#define EWOMS_ECL_PEACEMAN_WELL_HH
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
#include <opm/core/utility/PropertySystem.hpp>
|
|
#include <opm/core/utility/Average.hpp>
|
|
|
|
#include <dune/common/version.hh>
|
|
|
|
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,3)
|
|
#include <dune/geometry/referenceelements.hh>
|
|
#else
|
|
#include <dune/geometry/genericreferenceelements.hh>
|
|
#endif
|
|
|
|
#include <unordered_map>
|
|
|
|
namespace Opm {
|
|
namespace Properties {
|
|
NEW_PROP_TAG(Scalar);
|
|
NEW_PROP_TAG(Discretization);
|
|
NEW_PROP_TAG(FluidSystem);
|
|
NEW_PROP_TAG(Simulator);
|
|
NEW_PROP_TAG(ElementContext);
|
|
NEW_PROP_TAG(RateVector);
|
|
NEW_PROP_TAG(GridView);
|
|
NEW_PROP_TAG(NumPhases);
|
|
NEW_PROP_TAG(NumComponents);
|
|
}}
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class EcfvDiscretization;
|
|
|
|
/*!
|
|
* \brief The well model of Peaceman.
|
|
*
|
|
* This class is tailored for the element centered finite volume
|
|
* discretization, assumes a vertical borehole and is intended to be
|
|
* used by the EclWellManager.
|
|
*
|
|
* See:
|
|
*
|
|
* Z. Chen, G. Huan, Y. Ma: Computational Methods for Multiphase
|
|
* Flows in Porous Media, 1st edition, SIAM, 2006, pp. 445-446
|
|
*
|
|
* and
|
|
*
|
|
* D. W. Peaceman: Interpretation of well-block pressures in numerical
|
|
* reservoir simulation, The 52nd Annual SPE Fall Technical Conference
|
|
* and Exhibition, Denver, CO., 1977
|
|
*/
|
|
template <class TypeTag>
|
|
class EclPeacemanWell
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
// the dimension of the simulator's world
|
|
static const int dimWorld = GridView::dimensionworld;
|
|
|
|
// convenient access to the number of phases and the number of
|
|
// components
|
|
static const int numComponents = GET_PROP_VALUE(TypeTag, NumComponents);
|
|
static const int numPhases = GET_PROP_VALUE(TypeTag, NumPhases);
|
|
|
|
// convenient access to the phase and component indices. If the
|
|
// compiler bails out here, you're probably using an incompatible
|
|
// fluid system. Try to use the Ewoms::BlackOilFluidSystem...
|
|
static const int gasPhaseIdx = FluidSystem::gasPhaseIdx;
|
|
static const int oilPhaseIdx = FluidSystem::oilPhaseIdx;
|
|
static const int waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
|
|
static const int oilCompIdx = FluidSystem::oilCompIdx;
|
|
static const int waterCompIdx = FluidSystem::waterCompIdx;
|
|
static const int gasCompIdx = FluidSystem::gasCompIdx;
|
|
|
|
typedef Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/false> FluidState;
|
|
|
|
// all quantities that need to be stored per degree of freedom that intersects the
|
|
// well.
|
|
struct DofVariables {
|
|
// The connection transmissibility factor to be used for a given
|
|
// DOF. This object doubles by defining which DOFs are part of
|
|
// the well.
|
|
Scalar connectionTransmissibilityFactor;
|
|
|
|
// the volumetric reservoir rates for each fluid phase and each
|
|
// degree of freedom. This is calculated at the beginning of each
|
|
// iteration and used to impose rate limits.
|
|
std::array<Scalar, numPhases> unconstraintRates;
|
|
|
|
// the volumetric surface rates for each fluid phase and each
|
|
// degree of freedom. This is calculated at the beginning of each
|
|
// iteration and used to impose rate limits.
|
|
std::array<Scalar, numPhases> unconstraintSurfaceRates;
|
|
|
|
// the effective size of an element in each direction. This is defined as the
|
|
// distance of the face centers along the respective axis.
|
|
std::array<Scalar, dimWorld> effectiveSize;
|
|
|
|
// the radius of the well for the given degree of freedom
|
|
Scalar boreholeRadius;
|
|
|
|
// The skin factor of the well at the given degree of freedom
|
|
Scalar skinFactor;
|
|
};
|
|
|
|
// some safety checks/caveats
|
|
static_assert(std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value,
|
|
"The Peaceman well model is only implemented for the "
|
|
"element-centered finite volume discretization!");
|
|
static_assert(dimWorld == 3,
|
|
"The Peaceman well model is only implemented for 3D grids!");
|
|
|
|
public:
|
|
enum ControlMode {
|
|
BottomHolePressure,
|
|
TopHolePressure,
|
|
VolumetricSurfaceRate,
|
|
VolumetricReservoirRate
|
|
};
|
|
|
|
enum WellType {
|
|
Undefined,
|
|
Injector,
|
|
Producer
|
|
};
|
|
|
|
EclPeacemanWell(const Simulator &simulator)
|
|
: simulator_(simulator)
|
|
{
|
|
// set the composition of the injected fluids based. If
|
|
// somebody is stupid enough to inject oil, we assume he wants
|
|
// to loose his fortune on dry oil...
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx)
|
|
for (int compIdx = 0; compIdx < numComponents; ++ compIdx)
|
|
injectionFluidState_.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
injectionFluidState_.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
injectionFluidState_.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
injectionFluidState_.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
|
|
|
|
// set the temperature to 25 deg C, just so that it is set
|
|
injectionFluidState_.setTemperature(273.15 + 25);
|
|
}
|
|
|
|
/*!
|
|
* \brief Begin the specification of the well.
|
|
*
|
|
* The specification process is the following:
|
|
*
|
|
* beginSpec()
|
|
* setName("FOO");
|
|
* // add degrees of freedom to the well
|
|
* for (dof in wellDofs)
|
|
* addDof(dof);
|
|
*
|
|
* // set the radius of the well at the dof [m].
|
|
* // optional, if not specified, it is assumed to be 0.1524m
|
|
* setRadius(dof, someRadius);
|
|
*
|
|
* // set the skin factor of the well.
|
|
* // optional, if not specified, it is assumed to be 0
|
|
* setSkinFactor(dof, someSkinFactor);
|
|
* endSpec()
|
|
*
|
|
* // specify the phase which is supposed to be injected. (Optional,
|
|
* // if unspecified, the well will throw an
|
|
* // exception if it would inject something.)
|
|
* setInjectedPhaseIndex(phaseIdx);
|
|
*
|
|
* // set maximum production rate at reservoir conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // shut for production)
|
|
* setMaximumReservoirRate(someMassRate);
|
|
*
|
|
* // set maximum injection rate at reservoir conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // shut for injection)
|
|
* setMinmumReservoirRate(someMassRate);
|
|
*
|
|
* // set the relative weight of the mass rate of a fluid phase.
|
|
* // (Optional, if unspecified each phase exhibits a weight of 1)
|
|
* setPhaseWeight(phaseIdx, someWeight);
|
|
*
|
|
* // set maximum production rate at surface conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // not limited by the surface rate)
|
|
* setMaximumSurfaceRate(someMassRate);
|
|
*
|
|
* // set maximum production rate at surface conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // not limited by the surface rate)
|
|
* setMinimumSurfaceRate(someMassRate);
|
|
*
|
|
* // set the minimum pressure at the bottom of the well (Pa,
|
|
* // optional, if not specified, the well is assumes it estimates
|
|
* // the bottom hole pressure based on the top hole pressure
|
|
* // assuming hydrostatic conditions.)
|
|
* setMinimumBottomHolePressure(somePressure);
|
|
*
|
|
* // set the pressure at the top of the well (Pa,
|
|
* // optional, if not specified, the top hole pressure is
|
|
* // assumed to be 1 bar)
|
|
* setTopHolePressure(somePressure);
|
|
*
|
|
* // set the control mode of the well [m].
|
|
* // optional, if not specified, it is assumed to be "BottomHolePressure"
|
|
* setControlMode(Well::TopHolePressure);
|
|
*
|
|
* // set the top hole pressure of the well [Pa]
|
|
* // only required if the control mode is "TopHolePressure"
|
|
* setTopHolePressure(1e5);
|
|
*/
|
|
void beginSpec()
|
|
{
|
|
// this is going to be increased by any realistic grid. Shall we bet?
|
|
bottomDepth_ = -1e100;
|
|
bottomDofGlobalIdx_ = -1;
|
|
|
|
// By default, take the bottom hole pressure as a given
|
|
controlMode_ = ControlMode::BottomHolePressure;
|
|
|
|
// use one bar for the default bottom and top hole
|
|
// pressures. For the bottom hole pressure, this is probably
|
|
// off by at least one magnitude...
|
|
targetBhp_ = 1e5;
|
|
targetThp_ = 1e5;
|
|
|
|
// By default, all fluids exhibit the weight 1.0
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
volumetricWeight_[phaseIdx] = 1.0;
|
|
|
|
wellType_ = Undefined;
|
|
|
|
wellTotalVolume_ = 0.0;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the relative weight of the volumetric phase rates.
|
|
*/
|
|
void setVolumetricPhaseWeights(Scalar oilWeight, Scalar gasWeight, Scalar waterWeight)
|
|
{
|
|
volumetricWeight_[oilPhaseIdx] = oilWeight;
|
|
volumetricWeight_[gasPhaseIdx] = gasWeight;
|
|
volumetricWeight_[waterPhaseIdx] = waterWeight;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the human-readable name of the well
|
|
*
|
|
* Well, let's say "readable by some humans".
|
|
*/
|
|
const std::string &name() const
|
|
{ return name_; }
|
|
|
|
/*!
|
|
* \brief Set the human-readable name of the well
|
|
*/
|
|
void setName(const std::string &newName)
|
|
{ name_ = newName; }
|
|
|
|
/*!
|
|
* \brief Add a degree of freedom to the well.
|
|
*/
|
|
template <class Context>
|
|
void addDof(const Context &context,
|
|
int dofIdx,
|
|
Scalar connectionTransmissibilityFactor = 1.0)
|
|
{
|
|
int globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
if (applies(globalDofIdx))
|
|
// we already have this DOF in the well!
|
|
return;
|
|
|
|
const auto &dofPos = context.pos(dofIdx, /*timeIdx=*/0);
|
|
|
|
DofVariables &dofVars = dofVariables_[globalDofIdx];
|
|
dofVars.connectionTransmissibilityFactor = connectionTransmissibilityFactor;
|
|
|
|
wellTotalVolume_ += context.model().dofTotalVolume(globalDofIdx);
|
|
|
|
// determine the size of the element
|
|
dofVars.effectiveSize.fill(0.0);
|
|
|
|
// we assume all elements to be hexahedrons!
|
|
assert(context.element().template count</*codim=*/dimWorld>() == 8);
|
|
|
|
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,3)
|
|
const auto &refElem = Dune::ReferenceElements<Scalar, /*dim=*/3>::cube();
|
|
#else
|
|
const auto &refElem = Dune::GenericReferenceElements<Scalar, /*dim=*/3>::cube();
|
|
#endif
|
|
|
|
// determine the current element's effective size
|
|
const auto &elem = context.element();
|
|
int faceIdx = 0;
|
|
int numFaces = refElem.size(/*codim=*/1);
|
|
for (; faceIdx < numFaces; ++faceIdx) {
|
|
const auto &faceCenterLocal = refElem.position(faceIdx, /*codim=*/1);
|
|
const auto &faceCenter = elem.geometry().global(faceCenterLocal);
|
|
|
|
switch (faceIdx) {
|
|
case 0:
|
|
dofVars.effectiveSize[0] -= faceCenter[0];
|
|
break;
|
|
case 1:
|
|
dofVars.effectiveSize[0] += faceCenter[0];
|
|
break;
|
|
case 2:
|
|
dofVars.effectiveSize[1] -= faceCenter[1];
|
|
break;
|
|
case 3:
|
|
dofVars.effectiveSize[1] += faceCenter[1];
|
|
break;
|
|
case 4:
|
|
dofVars.effectiveSize[2] -= faceCenter[2];
|
|
break;
|
|
case 5:
|
|
dofVars.effectiveSize[2] += faceCenter[2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
// default borehole radius: 1/2 foot
|
|
dofVars.boreholeRadius = 0.3048/2;
|
|
|
|
// default skin factor: 0
|
|
dofVars.skinFactor = 0;
|
|
|
|
// we assume that the z-coordinate represents depth (and not
|
|
// height) here...
|
|
if (dofPos[2] > bottomDepth_) {
|
|
bottomDofGlobalIdx_ = globalDofIdx;
|
|
bottomDepth_ = dofPos[2];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Finalize the specification of the borehole.
|
|
*/
|
|
void endSpec()
|
|
{
|
|
const auto& comm = simulator_.gridView().comm();
|
|
|
|
// determine the maximum depth of the well over all processes
|
|
bottomDepth_ = comm.max(bottomDepth_);
|
|
|
|
// the total volume of the well must also be summed over all processes
|
|
wellTotalVolume_ = comm.sum(wellTotalVolume_);
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the control mode of the well.
|
|
*
|
|
* This specifies which quantities are assumed to be externally
|
|
* given and which must be calculated based on those.
|
|
*/
|
|
void setControlMode(ControlMode controlMode)
|
|
{ controlMode_ = controlMode; }
|
|
|
|
/*!
|
|
* \brief Set the type of the well (i.e., injector or producer).
|
|
*/
|
|
void setWellType(WellType wellType)
|
|
{ wellType_ = wellType; }
|
|
|
|
/*!
|
|
* \brief Returns the type of the well (i.e., injector or producer).
|
|
*/
|
|
WellType wellType() const
|
|
{ return wellType_; }
|
|
|
|
/*!
|
|
* \brief Set the index of fluid phase to be injected.
|
|
*
|
|
* This is only relevant if the well type is an injector.
|
|
*/
|
|
void setInjectedPhaseIndex(int injPhaseIdx)
|
|
{ injectedPhaseIdx_ = injPhaseIdx; }
|
|
|
|
/*!
|
|
* \brief The Z-coordinate of the well's deepest degree of freedom
|
|
*/
|
|
Scalar bottomDepth() const
|
|
{ return bottomDepth_; }
|
|
|
|
/*!
|
|
* \brief Set whether the well should be closed or not
|
|
*/
|
|
void setOpen(bool yesno)
|
|
{ isOpen_ = yesno; }
|
|
|
|
/*!
|
|
* \brief Return whether the well is closed or not
|
|
*/
|
|
bool isOpen() const
|
|
{ return isOpen_; }
|
|
|
|
/*!
|
|
* \brief Return true iff a degree of freedom is directly affected
|
|
* by the well
|
|
*/
|
|
bool applies(int globalDofIdx) const
|
|
{ return dofVariables_.count(globalDofIdx) > 0; }
|
|
|
|
/*!
|
|
* \brief Set the maximum bottom hole pressure [Pa] of the well.
|
|
*/
|
|
void setTargetBottomHolePressure(Scalar val)
|
|
{ targetBhp_ = val; }
|
|
|
|
/*!
|
|
* \brief Set the top hole pressure [Pa] of the well.
|
|
*/
|
|
void setTargetTopHolePressure(Scalar val)
|
|
{ targetThp_ = val; }
|
|
|
|
/*!
|
|
* \brief Set the maximum combined rate of the fluids at the surface.
|
|
*/
|
|
void setMaximumSurfaceRate(Scalar value)
|
|
{ maximumSurfaceRate_ = value; }
|
|
|
|
/*!
|
|
* \brief Set the maximum combined rate of the fluids at the surface.
|
|
*/
|
|
void setMaximumReservoirRate(Scalar value)
|
|
{ maximumReservoirRate_ = value; }
|
|
|
|
/*!
|
|
* \brief Set the skin factor of the well
|
|
*/
|
|
template <class Context>
|
|
void setSkinFactor(const Context &context, int dofIdx, Scalar value)
|
|
{
|
|
int globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx].skinFactor = value;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the borehole radius of the well
|
|
*/
|
|
template <class Context>
|
|
void setRadius(const Context &context, int dofIdx, Scalar value)
|
|
{
|
|
int globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx].boreholeRadius = value;
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that a time step has just begun.
|
|
*/
|
|
void beginTimeStep()
|
|
{
|
|
// nothing to do, yet
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that an iteration has just begun.
|
|
*
|
|
* The beginIteration*() methods, the well calculates the bottom
|
|
* and top hole pressures, the actual unconstraint production and
|
|
* injection rates, etc. The callback is split into three parts as
|
|
* this arrangement avoids iterating over the whole grid and to
|
|
* re-calculate the volume variables for each well.
|
|
*
|
|
* This is supposed to prepare the well object to do the
|
|
* computations which are required to do the DOF specific
|
|
* things.
|
|
*/
|
|
void beginIterationPreProcess()
|
|
{
|
|
// calculate the bottom hole pressure to be actually used
|
|
if (controlMode_ == ControlMode::TopHolePressure) {
|
|
// assume a density of 650 kg/m^3 for the bottom hole pressure
|
|
// calculation
|
|
Scalar rho = 650.0;
|
|
effectiveBottomHolePressure_ = targetThp_ + rho*bottomDepth_;
|
|
|
|
// set the maximum rates to unlimited
|
|
maximumReservoirRate_ = 1e100;
|
|
maximumSurfaceRate_ = 1e100;
|
|
}
|
|
else if (controlMode_ == ControlMode::BottomHolePressure) {
|
|
effectiveBottomHolePressure_ = targetBhp_;
|
|
|
|
// set the maximum rates to unlimited
|
|
maximumReservoirRate_ = 1e100;
|
|
maximumSurfaceRate_ = 1e100;
|
|
}
|
|
else {
|
|
// calculate the bottom hole pressure limit from the top-hole pressure
|
|
// limit. this is a HACK since the effective density must be given and is
|
|
// assumed to be constant...
|
|
Scalar rhoEff = 650; // kg/m^3
|
|
Scalar bhpFromThp = targetThp_ + rhoEff*bottomDepth_;
|
|
|
|
if (wellType_ == WellType::Injector)
|
|
effectiveBottomHolePressure_ = std::max(bhpFromThp, targetBhp_);
|
|
else if (wellType_ == WellType::Producer)
|
|
effectiveBottomHolePressure_ = std::min(bhpFromThp, targetBhp_);
|
|
}
|
|
|
|
if (wellType_ == WellType::Injector)
|
|
observedBhp_ = - 1e100;
|
|
else if (wellType_ == WellType::Producer)
|
|
observedBhp_ = 1e100;
|
|
|
|
// make it very likely that we screw up if we control for {surface,reservoir}
|
|
// rate, but depend on the {reservoir,surface} rate somewhere...
|
|
if (controlMode_ == ControlMode::VolumetricSurfaceRate)
|
|
maximumReservoirRate_ = std::numeric_limits<Scalar>::quiet_NaN();
|
|
else if (controlMode_ == ControlMode::VolumetricReservoirRate)
|
|
maximumSurfaceRate_ = std::numeric_limits<Scalar>::quiet_NaN();
|
|
|
|
// reset the unconstraint rates for the complete well. ("unconstraint" ==
|
|
// unaffected by rate limits.)
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
unconstraintReservoirRates_[phaseIdx] = 0.0;
|
|
unconstraintSurfaceRates_[phaseIdx] = 0.0;
|
|
currentSurfaceRates_[phaseIdx] = 0.0;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Do the DOF specific part at the beginning of each iteration
|
|
*/
|
|
template <class Context>
|
|
void beginIterationAccumulate(Context &context, int timeIdx)
|
|
{
|
|
std::array<Scalar, numPhases> reservoirVolRates;
|
|
RateVector massRate;
|
|
for (int dofIdx = 0; dofIdx < context.numPrimaryDof(timeIdx); ++dofIdx) {
|
|
int globalDofIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
if (!applies(globalDofIdx))
|
|
continue;
|
|
|
|
const DofVariables &dofVars = dofVariables_.at(globalDofIdx);
|
|
|
|
computeUnconstraintVolumetricDofRates_(reservoirVolRates, dofVars, context, dofIdx, timeIdx);
|
|
|
|
dofVariables_[globalDofIdx].unconstraintRates = reservoirVolRates;
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
massRate.setVolumetricRate(context.intensiveQuantities(dofIdx, timeIdx).fluidState(),
|
|
phaseIdx,
|
|
reservoirVolRates[phaseIdx]);
|
|
|
|
unconstraintReservoirRates_[phaseIdx] += reservoirVolRates[phaseIdx];
|
|
}
|
|
|
|
std::array<Scalar, numPhases> dofSurfaceRate;
|
|
const auto& intQuants = context.intensiveQuantities(dofIdx, timeIdx);
|
|
computeSurfaceRates_(dofSurfaceRate,
|
|
reservoirVolRates,
|
|
intQuants.fluidState());
|
|
|
|
dofVariables_[globalDofIdx].unconstraintSurfaceRates = dofSurfaceRate;
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx)
|
|
unconstraintSurfaceRates_[phaseIdx] += dofSurfaceRate[phaseIdx];
|
|
|
|
if (globalDofIdx == bottomDofGlobalIdx_)
|
|
observedBhp_ = intQuants.fluidState().pressure(oilPhaseIdx);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that an iteration has just begun.
|
|
*
|
|
* This is the post-processing part which uses the results of the
|
|
* accumulation callback.
|
|
*/
|
|
void beginIterationPostProcess()
|
|
{
|
|
const auto& comm = simulator_.gridView().comm();
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
unconstraintReservoirRates_[phaseIdx] = comm.sum(unconstraintReservoirRates_[phaseIdx]);
|
|
unconstraintSurfaceRates_[phaseIdx] = comm.sum(unconstraintSurfaceRates_[phaseIdx]);
|
|
}
|
|
|
|
// determine the grid-global observed bottom hole pressure
|
|
if (wellType_ == Producer)
|
|
observedBhp_ = comm.min(observedBhp_);
|
|
else if (wellType_ == Injector)
|
|
observedBhp_ = comm.max(observedBhp_);
|
|
|
|
// determine the rate-limited surface rates
|
|
Scalar alpha = 1.0;
|
|
if (controlMode_ == VolumetricSurfaceRate) {
|
|
Scalar weightedSurfRate = computeWeightedRate_(unconstraintSurfaceRates_);
|
|
if (std::abs(weightedSurfRate) > maximumSurfaceRate_)
|
|
alpha = std::abs(maximumSurfaceRate_/weightedSurfRate);
|
|
}
|
|
else if (controlMode_ == VolumetricReservoirRate) {
|
|
Scalar weightedResvRate = computeWeightedRate_(unconstraintReservoirRates_);
|
|
if (std::abs(weightedResvRate) > maximumReservoirRate_)
|
|
alpha = std::abs(maximumReservoirRate_/weightedResvRate);
|
|
}
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
currentSurfaceRates_[phaseIdx] = unconstraintSurfaceRates_[phaseIdx]*alpha;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Called by the simulator after each Newton-Raphson iteration.
|
|
*/
|
|
void endIteration()
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Called by the simulator after each time step.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
if (simulator_.gridView().comm().rank() == 0) {
|
|
Scalar weightedLimitedSurfaceRate = computeWeightedRate_(currentSurfaceRates_);
|
|
|
|
std::cout << "Well '" << name() << "':\n";
|
|
std::cout << " Control mode: " << controlMode_ << "\n";
|
|
std::cout << " Target BHP: " << targetBhp_ << "\n";
|
|
std::cout << " Observed BHP: " << observedBhp_ << "\n";
|
|
std::cout << " Unconstraint phase-specific surface rates:\n";
|
|
std::cout << " oil=" << unconstraintSurfaceRates_[oilPhaseIdx]
|
|
<< " m^3/s (=" << 543439.65*unconstraintSurfaceRates_[oilPhaseIdx] << " STB/day)\n";
|
|
std::cout << " gas=" << unconstraintSurfaceRates_[gasPhaseIdx]
|
|
<< " m^3/s (=" << 3051.1872*unconstraintSurfaceRates_[gasPhaseIdx] << " MCF/day)\n";
|
|
std::cout << " water=" << unconstraintSurfaceRates_[waterPhaseIdx]
|
|
<< " m^3/s (=" << 543439.65*unconstraintSurfaceRates_[waterPhaseIdx] << " STB/day)\n";
|
|
std::cout << " Rate-limited phase-specific surface rates:\n";
|
|
std::cout << " oil=" << currentSurfaceRates_[oilPhaseIdx]
|
|
<< " m^3/s (=" << 543439.65*currentSurfaceRates_[oilPhaseIdx] << " STB/day)\n";
|
|
std::cout << " gas=" << currentSurfaceRates_[gasPhaseIdx]
|
|
<< " m^3/s (=" << 3051.1872*currentSurfaceRates_[gasPhaseIdx] << " MCF/day)\n";
|
|
std::cout << " water=" << currentSurfaceRates_[waterPhaseIdx]
|
|
<< " m^3/s (=" << 543439.65*currentSurfaceRates_[waterPhaseIdx] << " STB/day)\n";
|
|
std::cout << " Rate-limited weighted limited rate: " << weightedLimitedSurfaceRate << "\n";
|
|
std::cout << " Maximum weighted surface rate: " << maximumSurfaceRate_ << "\n";
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the source term for a degree of freedom.
|
|
*/
|
|
template <class Context>
|
|
void computeTotalRatesForDof(RateVector &q,
|
|
const Context &context,
|
|
int dofIdx,
|
|
int timeIdx) const
|
|
{
|
|
q = 0.0;
|
|
|
|
int globalDofIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
auto dofVarsIt = dofVariables_.find(globalDofIdx);
|
|
if (!isOpen_ || dofVarsIt == dofVariables_.end())
|
|
return;
|
|
|
|
std::array<Scalar, numPhases> volumetricRates;
|
|
computeUnconstraintVolumetricDofRates_(volumetricRates,
|
|
dofVarsIt->second,
|
|
context,
|
|
dofIdx,
|
|
timeIdx);
|
|
|
|
limitVolumetricReservoirRates_(volumetricRates,
|
|
dofVarsIt->second,
|
|
context,
|
|
dofIdx,
|
|
timeIdx);
|
|
|
|
// convert to mass rates
|
|
RateVector phaseRate;
|
|
const auto &volVars = context.intensiveQuantities(dofIdx, timeIdx);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
phaseRate.setVolumetricRate(volVars.fluidState(), phaseIdx, volumetricRates[phaseIdx]);
|
|
q += phaseRate;
|
|
}
|
|
Valgrind::CheckDefined(q);
|
|
}
|
|
|
|
/*!
|
|
* \brief This method writes the complete state of the well
|
|
* to the harddisk.
|
|
*/
|
|
template <class Restarter>
|
|
void serialize(Restarter &res)
|
|
{
|
|
res.serializeSectionBegin("PeacemanWell");
|
|
|
|
res.serializeStream()
|
|
<< targetThp_ << " "
|
|
<< targetBhp_ << " "
|
|
<< controlMode_ << " "
|
|
<< wellType_ << " "
|
|
<< maximumSurfaceRate_ << " "
|
|
<< maximumReservoirRate_ << " "
|
|
<< isOpen_ << " "
|
|
<< injectedPhaseIdx_ << " ";
|
|
|
|
// fluid state
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx)
|
|
res.serializeStream()
|
|
<< volumetricWeight_[phaseIdx] << " ";
|
|
res.serializeSectionEnd();
|
|
}
|
|
|
|
/*!
|
|
* \brief This method restores the complete state of the well
|
|
* from disk.
|
|
*
|
|
* It is the inverse of the serialize() method.
|
|
*
|
|
* \tparam Restarter The deserializer type
|
|
*
|
|
* \param res The deserializer object
|
|
*/
|
|
template <class Restarter>
|
|
void deserialize(Restarter &res)
|
|
{
|
|
res.deserializeSectionBegin("PeacemanWell");
|
|
res.deserializeStream()
|
|
>> targetThp_
|
|
>> targetBhp_
|
|
>> controlMode_
|
|
>> wellType_
|
|
>> maximumSurfaceRate_
|
|
>> maximumReservoirRate_
|
|
>> isOpen_
|
|
>> injectedPhaseIdx_;
|
|
|
|
// fluid state
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx)
|
|
res.serializeStream()
|
|
>> volumetricWeight_[phaseIdx];
|
|
res.deserializeSectionEnd();
|
|
}
|
|
|
|
protected:
|
|
template <class Context>
|
|
void computeUnconstraintVolumetricDofRates_(std::array<Scalar, numPhases> &volRates,
|
|
const DofVariables &dofVars,
|
|
const Context &context,
|
|
int dofIdx,
|
|
int timeIdx) const
|
|
{
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
volRates[phaseIdx] = 0.0;
|
|
|
|
const auto &intQuants = context.intensiveQuantities(dofIdx, timeIdx);
|
|
|
|
RateVector phaseRate;
|
|
|
|
Scalar depth = context.pos(dofIdx, timeIdx)[2];
|
|
|
|
// connection transmissibility factor for the current DOF.
|
|
//Scalar connTransFac = dofVars.connectionTransmissibilityFactor;
|
|
|
|
// Intrinsic permeability. E100 uses the geometric average of the X and the Y
|
|
// permability as the effective one...
|
|
const auto &K = intQuants.intrinsicPermeability();
|
|
Scalar Kvertical = Opm::utils::geometricAverage(K[0][0], K[1][1]);
|
|
|
|
// calculate the equivalence radius of the well inside the cell. This seems to be
|
|
// E100 vodoo...
|
|
Scalar Dx = dofVars.effectiveSize[0];
|
|
Scalar Dy = dofVars.effectiveSize[1];
|
|
Scalar Dz = dofVars.effectiveSize[2];
|
|
|
|
Scalar tmp = std::sqrt(K[1][1]/K[0][0]);
|
|
Scalar tmp2 = std::sqrt(tmp);
|
|
Scalar rEquiv = 0.28*std::sqrt(Dx*Dx*tmp + Dy*Dy/tmp)/(tmp2 + 1/tmp2);
|
|
|
|
// the well borehole radius for the cell
|
|
Scalar rWell = dofVars.boreholeRadius;
|
|
|
|
// the skin factor of the well at the cell
|
|
Scalar skinFactor = dofVars.skinFactor;
|
|
|
|
// gravity constant
|
|
Scalar g = 9.81;
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// well model due to Peaceman; see Chen et al., p. 449
|
|
|
|
// bottom hole pressure
|
|
Scalar pbh = effectiveBottomHolePressure_;
|
|
|
|
// phase pressure in grid cell
|
|
Scalar p = intQuants.fluidState().pressure(phaseIdx);
|
|
|
|
// density of fluid phase
|
|
Scalar rho;
|
|
|
|
Scalar lambda;
|
|
if (wellType_ == Producer) {
|
|
//assert(p < pbh);
|
|
rho = intQuants.fluidState().density(phaseIdx);
|
|
lambda = intQuants.mobility(phaseIdx);
|
|
}
|
|
else if (wellType_ == Injector) {
|
|
//assert(p > pbh);
|
|
|
|
if (phaseIdx != injectedPhaseIdx_)
|
|
continue;
|
|
|
|
injectionFluidState_.setPressure(phaseIdx, p);
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
paramCache.updateAll(injectionFluidState_);
|
|
|
|
rho = FluidSystem::density(injectionFluidState_, paramCache, phaseIdx);
|
|
lambda = 1.0/FluidSystem::viscosity(injectionFluidState_, paramCache, phaseIdx);
|
|
}
|
|
else
|
|
OPM_THROW(std::logic_error,
|
|
"Type of well \"" << name() << "\" is undefined");
|
|
|
|
Valgrind::CheckDefined(pbh);
|
|
Valgrind::CheckDefined(p);
|
|
Valgrind::CheckDefined(rho);
|
|
Valgrind::CheckDefined(lambda);
|
|
|
|
// pressure in the borehole ("hole pressure") at the given location
|
|
Scalar ph = pbh + rho*g*(bottomDepth_ - depth);
|
|
|
|
// volumetric flux of the phase from the well to the reservoir
|
|
volRates[phaseIdx] =
|
|
lambda*(ph - p)*Kvertical*Dz*2*M_PI
|
|
/ (std::log(rEquiv/rWell) + skinFactor);
|
|
|
|
// make sure that injector wells only inject (-> positive rates) and
|
|
// producers only produce (-> negative rates). TODO: this is not what happens
|
|
// in the physical world, as cross-flow may occur...
|
|
if (wellType_ == Injector)
|
|
volRates[phaseIdx] = std::max(volRates[phaseIdx], 0.0);
|
|
else if (wellType_ == Producer)
|
|
volRates[phaseIdx] = std::min(volRates[phaseIdx], 0.0);
|
|
|
|
Valgrind::CheckDefined(g);
|
|
Valgrind::CheckDefined(ph);
|
|
Valgrind::CheckDefined(volRates[phaseIdx]);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Given the volumetric rates for all phases, return the
|
|
* corresponding weighted rate
|
|
*
|
|
* The weights are user-specified and can be set using
|
|
* setVolumetricPhaseWeights()
|
|
*/
|
|
Scalar computeWeightedRate_(const std::array<Scalar, numPhases> &volRates) const
|
|
{
|
|
Scalar result = 0;
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
result += volRates[phaseIdx]*volumetricWeight_[phaseIdx];
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \brief Convert volumetric reservoir rates into volumetric volume rates.
|
|
*
|
|
* This requires the density and composition of the phases and
|
|
* thus the applicable fluid state.
|
|
*/
|
|
template <class FluidState>
|
|
void computeSurfaceRates_(std::array<Scalar, numPhases> &surfaceRates,
|
|
const std::array<Scalar, numPhases> &reservoirRate,
|
|
const FluidState &fluidState) const
|
|
{
|
|
// If your compiler bails out here, you have not
|
|
// chosen the correct fluid system. Currently,
|
|
// only Opm::FluidSystems::BlackOil is supported,
|
|
// sorry...
|
|
Scalar rhoOilSurface = FluidSystem::surfaceDensity(oilPhaseIdx, /*regionIdx=*/0);
|
|
Scalar rhoGasSurface = FluidSystem::surfaceDensity(gasPhaseIdx, /*regionIdx=*/0);
|
|
Scalar rhoWaterSurface = FluidSystem::surfaceDensity(waterPhaseIdx, /*regionIdx=*/0);
|
|
|
|
// oil
|
|
surfaceRates[oilPhaseIdx] =
|
|
reservoirRate[oilPhaseIdx]
|
|
* fluidState.density(oilPhaseIdx)
|
|
* fluidState.massFraction(oilPhaseIdx, oilCompIdx)
|
|
/ rhoOilSurface;
|
|
|
|
// gas
|
|
surfaceRates[gasPhaseIdx] =
|
|
// gas in gas phase
|
|
reservoirRate[gasPhaseIdx]
|
|
* fluidState.density(gasPhaseIdx)
|
|
/ rhoGasSurface
|
|
+
|
|
// gas in oil phase
|
|
reservoirRate[oilPhaseIdx]
|
|
* fluidState.density(oilPhaseIdx)
|
|
* fluidState.massFraction(oilPhaseIdx, gasCompIdx)
|
|
/ rhoGasSurface;
|
|
|
|
// water
|
|
surfaceRates[waterPhaseIdx] =
|
|
reservoirRate[waterPhaseIdx]
|
|
* fluidState.density(waterPhaseIdx)
|
|
/ rhoWaterSurface;
|
|
}
|
|
|
|
/*!
|
|
* \brief Calculate the final mass rate which ought to be used
|
|
* after the user specified rate limits have been applied.
|
|
*
|
|
* The input rates are the volumetric reservoir phase rates which
|
|
* emerge if the user-defined rate limits are not considered.
|
|
*/
|
|
template <class Context>
|
|
void limitVolumetricReservoirRates_(std::array<Scalar, numPhases> &reservoirDofVolRates,
|
|
const DofVariables &dofVars,
|
|
const Context &context,
|
|
int dofIdx,
|
|
int timeIdx) const
|
|
{
|
|
// we don't look at the rates if we control for one of the pressures...
|
|
if (controlMode_ == ControlMode::BottomHolePressure ||
|
|
controlMode_ == ControlMode::TopHolePressure)
|
|
return;
|
|
|
|
//int globalDofIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
if (controlMode_ == ControlMode::VolumetricSurfaceRate) {
|
|
// convert the volumetric reservoir rates to to volumetric surface rates.
|
|
Scalar weightedSurfaceRate;
|
|
|
|
std::array<Scalar, numPhases> surfaceDofVolRates;
|
|
computeSurfaceRates_(surfaceDofVolRates,
|
|
reservoirDofVolRates,
|
|
context.intensiveQuantities(dofIdx, timeIdx).fluidState());
|
|
|
|
// subtract the effect of the unmodified degree of freedom to the total well
|
|
// rate and add the effect of the potentially modified one. (i.e., add
|
|
// the difference due to the modified primary variables at the DOF.)
|
|
weightedSurfaceRate = computeWeightedRate_(unconstraintSurfaceRates_);
|
|
weightedSurfaceRate -= computeWeightedRate_(dofVars.unconstraintSurfaceRates);
|
|
weightedSurfaceRate += computeWeightedRate_(surfaceDofVolRates);
|
|
|
|
// if we're below the limit, we're gold
|
|
if (std::abs(weightedSurfaceRate) <= maximumSurfaceRate_)
|
|
return;
|
|
|
|
// if not, reduce the well's rate. so far, we reduce the reservoir rate
|
|
// proportionally. that is slightly wrong, but we don't care...
|
|
Scalar alpha = maximumSurfaceRate_ / std::abs(weightedSurfaceRate);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
reservoirDofVolRates[phaseIdx] *= alpha;
|
|
}
|
|
else if (controlMode_ == ControlMode::VolumetricReservoirRate) {
|
|
// calulate the current total rate of the well: first subtract the rate of the
|
|
// DOF from the prestine well rates, then add the just calculated rate to it.
|
|
Scalar weightedReservoirRate = computeWeightedRate_(unconstraintReservoirRates_);
|
|
weightedReservoirRate -= computeWeightedRate_(dofVars.unconstraintRates);
|
|
weightedReservoirRate += computeWeightedRate_(reservoirDofVolRates);
|
|
|
|
// if we're below the limit, we're gold
|
|
if (std::abs(weightedReservoirRate) <= maximumReservoirRate_)
|
|
return;
|
|
|
|
// if not, we have to reduce the total rate. We do this proportionally to the
|
|
// volume produced of each fluid.
|
|
Scalar alpha = maximumReservoirRate_ / std::abs(weightedReservoirRate);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
reservoirDofVolRates[phaseIdx] *= alpha;
|
|
}
|
|
}
|
|
|
|
const Simulator &simulator_;
|
|
|
|
std::string name_;
|
|
|
|
std::unordered_map<int, DofVariables> dofVariables_;
|
|
|
|
// the sum of the total volumes of all the degrees of freedoms that interact with the well
|
|
Scalar wellTotalVolume_;
|
|
|
|
// The assumed bottom and top hole pressures as specified by the user
|
|
Scalar targetBhp_;
|
|
Scalar targetThp_;
|
|
|
|
// real pressure seen at the bottom of the borehole
|
|
Scalar observedBhp_;
|
|
|
|
// The sum of the unconstraint volumetric reservoir rates of all
|
|
// degrees of freedom in the well for all fluid phases. This is
|
|
// calculated at the beginning of each iteration and used to
|
|
// impose rate limits. (basically, this can be calculated from the
|
|
// above structure but it would be quite slow because this number
|
|
// is required for each DOF...)
|
|
std::array<Scalar, numPhases> unconstraintReservoirRates_;
|
|
|
|
// the same as the above but as surface rate
|
|
std::array<Scalar, numPhases> unconstraintSurfaceRates_;
|
|
|
|
// the total rate of the well with limits applied
|
|
std::array<Scalar, numPhases> currentSurfaceRates_;
|
|
|
|
// specifies the quantities which are controlled for (i.e., which
|
|
// should be assumed to be externally specified and which should
|
|
// be computed based on those)
|
|
ControlMode controlMode_;
|
|
|
|
// the type of the well (injector, producer or undefined)
|
|
WellType wellType_;
|
|
|
|
// The bottom hole pressure to be used by the well model. This may
|
|
// be computed from the top hole pressure (if the control mode is
|
|
// TopHolePressure), or it may be just the user-specified bottom
|
|
// hole pressure if the control mode is BottomHolePressure.
|
|
Scalar effectiveBottomHolePressure_;
|
|
|
|
// The maximum weighted volumetric surface rates specified by the
|
|
// user. This is used to apply rate limits and it is to be read as
|
|
// the maximum absolute value of the rate, i.e., the well can
|
|
// produce or inject the given amount.
|
|
Scalar maximumSurfaceRate_;
|
|
|
|
// The maximum weighted volumetric reservoir rates specified by
|
|
// the user. This is used to apply rate limits and it is to be
|
|
// read as the maximum absolute value of the rate, i.e., the well
|
|
// can produce or inject the given amount.
|
|
Scalar maximumReservoirRate_;
|
|
|
|
// Specifies whether the well is currently shut or not. If true,
|
|
// this has the same effect as setting the minimum and maximum
|
|
// well rates to zero, but with this the well can be shut and
|
|
// opened without remembering the well rates
|
|
bool isOpen_;
|
|
|
|
// The relative weight of the volumetric rate of each fluid
|
|
Scalar volumetricWeight_[numPhases];
|
|
|
|
// The thermodynamic state of the fluid which gets injected
|
|
//
|
|
// The fact that this attribute is mutable is kind of an hack
|
|
// which can be avoided using a PressureOverlayFluidState, but
|
|
// then performance would be slightly worse...
|
|
mutable FluidState injectionFluidState_;
|
|
|
|
int injectedPhaseIdx_;
|
|
|
|
// the depth of the deepest DOF. (actually, the center of this
|
|
// DOF, but the difference should be minimal.)
|
|
Scalar bottomDepth_;
|
|
|
|
// global index of the DOF at the bottom of the well
|
|
int bottomDofGlobalIdx_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|