mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 19:33:00 -06:00
2331 lines
82 KiB
C++
2331 lines
82 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Exceptions.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
//#include <fstream>
|
|
|
|
// A debugging utility.
|
|
#define DUMP(foo) \
|
|
do { \
|
|
std::cout << "==========================================\n" \
|
|
<< #foo ":\n" \
|
|
<< collapseJacs(foo) << std::endl; \
|
|
} while (0)
|
|
|
|
#define DUMPVAL(foo) \
|
|
do { \
|
|
std::cout << "==========================================\n" \
|
|
<< #foo ":\n" \
|
|
<< foo.value() << std::endl; \
|
|
} while (0)
|
|
|
|
#define DISKVAL(foo) \
|
|
do { \
|
|
std::ofstream os(#foo); \
|
|
os.precision(16); \
|
|
os << foo.value() << std::endl; \
|
|
} while (0)
|
|
|
|
|
|
namespace Opm {
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
std::vector<int>
|
|
buildAllCells(const int nc)
|
|
{
|
|
std::vector<int> all_cells(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
|
|
|
return all_cells;
|
|
}
|
|
|
|
|
|
|
|
template<class Grid>
|
|
V computePerfPress(const Grid& grid, const Wells& wells, const V& rho, const double grav)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nw = wells.number_of_wells;
|
|
const int nperf = wells.well_connpos[nw];
|
|
const int dim = dimensions(grid);
|
|
V wdp = V::Zero(nperf,1);
|
|
assert(wdp.size() == rho.size());
|
|
|
|
// Main loop, iterate over all perforations,
|
|
// using the following formula:
|
|
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
|
|
// where the total density rho(perf) is taken to be
|
|
// sum_p (rho_p*saturation_p) in the perforation cell.
|
|
// [although this is computed on the outside of this function].
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double ref_depth = wells.depth_ref[w];
|
|
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
|
|
const int cell = wells.well_cells[j];
|
|
const double cell_depth = cellCentroid(grid, cell)[dim - 1];
|
|
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
|
|
}
|
|
}
|
|
return wdp;
|
|
}
|
|
|
|
|
|
|
|
template <class PU>
|
|
std::vector<bool>
|
|
activePhases(const PU& pu)
|
|
{
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
std::vector<bool> active(maxnp, false);
|
|
|
|
for (int p = 0; p < pu.MaxNumPhases; ++p) {
|
|
active[ p ] = pu.phase_used[ p ] != 0;
|
|
}
|
|
|
|
return active;
|
|
}
|
|
|
|
|
|
|
|
template <class PU>
|
|
std::vector<int>
|
|
active2Canonical(const PU& pu)
|
|
{
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
std::vector<int> act2can(maxnp, -1);
|
|
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (pu.phase_used[ phase ]) {
|
|
act2can[ pu.phase_pos[ phase ] ] = phase;
|
|
}
|
|
}
|
|
|
|
return act2can;
|
|
}
|
|
|
|
|
|
} // Anonymous namespace
|
|
|
|
template<class T>
|
|
void FullyImplicitBlackoilSolver<T>::SolverParameter::
|
|
reset()
|
|
{
|
|
// default values for the solver parameters
|
|
dp_max_rel_ = 1.0e9;
|
|
ds_max_ = 0.2;
|
|
dr_max_rel_ = 1.0e9;
|
|
relax_type_ = DAMPEN;
|
|
relax_max_ = 0.5;
|
|
relax_increment_ = 0.1;
|
|
relax_rel_tol_ = 0.2;
|
|
max_iter_ = 15;
|
|
}
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::SolverParameter::
|
|
SolverParameter()
|
|
{
|
|
// set default values
|
|
reset();
|
|
}
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::SolverParameter::
|
|
SolverParameter( const parameter::ParameterGroup& param )
|
|
{
|
|
// set default values
|
|
reset();
|
|
|
|
// overload with given parameters
|
|
dp_max_rel_ = param.getDefault("dp_max_rel", dp_max_rel_);
|
|
ds_max_ = param.getDefault("ds_max", ds_max_);
|
|
dr_max_rel_ = param.getDefault("dr_max_rel", dr_max_rel_);
|
|
relax_max_ = param.getDefault("relax_max", relax_max_);
|
|
max_iter_ = param.getDefault("max_iter", max_iter_);
|
|
|
|
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
|
|
if (relaxation_type == "dampen") {
|
|
relax_type_ = DAMPEN;
|
|
} else if (relaxation_type == "sor") {
|
|
relax_type_ = SOR;
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::
|
|
FullyImplicitBlackoilSolver(const SolverParameter& param,
|
|
const Grid& grid ,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const Wells* wells,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
const bool has_disgas,
|
|
const bool has_vapoil)
|
|
: grid_ (grid)
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, rock_comp_props_(rock_comp_props)
|
|
, wells_ (wells)
|
|
, linsolver_ (linsolver)
|
|
, active_(activePhases(fluid.phaseUsage()))
|
|
, canph_ (active2Canonical(fluid.phaseUsage()))
|
|
, cells_ (buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
|
|
, ops_ (grid)
|
|
, wops_ (wells_)
|
|
, has_disgas_(has_disgas)
|
|
, has_vapoil_(has_vapoil)
|
|
, param_( param )
|
|
, use_threshold_pressure_(false)
|
|
, rq_ (fluid.numPhases())
|
|
, phaseCondition_(AutoDiffGrid::numCells(grid))
|
|
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
|
ADB::null(),
|
|
ADB::null() } )
|
|
{
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::
|
|
setThresholdPressures(const std::vector<double>& threshold_pressures_by_face)
|
|
{
|
|
const int num_faces = AutoDiffGrid::numFaces(grid_);
|
|
if (int(threshold_pressures_by_face.size()) != num_faces) {
|
|
OPM_THROW(std::runtime_error, "Illegal size of threshold_pressures_by_face input, must be equal to number of faces.");
|
|
}
|
|
use_threshold_pressure_ = true;
|
|
// Map to interior faces.
|
|
const int num_ifaces = ops_.internal_faces.size();
|
|
threshold_pressures_by_interior_face_.resize(num_ifaces);
|
|
for (int ii = 0; ii < num_ifaces; ++ii) {
|
|
threshold_pressures_by_interior_face_[ii] = threshold_pressures_by_face[ops_.internal_faces[ii]];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
int
|
|
FullyImplicitBlackoilSolver<T>::
|
|
step(const double dt,
|
|
BlackoilState& x ,
|
|
WellStateFullyImplicitBlackoil& xw)
|
|
{
|
|
const V pvdt = geo_.poreVolume() / dt;
|
|
|
|
if (active_[Gas]) { updatePrimalVariableFromState(x); }
|
|
|
|
{
|
|
const SolutionState state = constantState(x, xw);
|
|
computeAccum(state, 0);
|
|
computeWellConnectionPressures(state, xw);
|
|
}
|
|
|
|
std::vector<std::vector<double>> residual_history;
|
|
|
|
assemble(pvdt, x, xw);
|
|
|
|
|
|
bool converged = false;
|
|
double omega = 1.;
|
|
|
|
residual_history.push_back(residuals());
|
|
|
|
int it = 0;
|
|
converged = getConvergence(dt,it);
|
|
const int sizeNonLinear = residual_.sizeNonLinear();
|
|
|
|
V dxOld = V::Zero(sizeNonLinear);
|
|
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
const enum RelaxType relaxtype = relaxType();
|
|
int linearIterations = 0;
|
|
|
|
while ((!converged) && (it < maxIter())) {
|
|
V dx = solveJacobianSystem();
|
|
|
|
// store number of linear iterations used
|
|
linearIterations += linsolver_.iterations();
|
|
|
|
detectNewtonOscillations(residual_history, it, relaxRelTol(), isOscillate, isStagnate);
|
|
|
|
if (isOscillate) {
|
|
omega -= relaxIncrement();
|
|
omega = std::max(omega, relaxMax());
|
|
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
|
|
}
|
|
|
|
stablizeNewton(dx, dxOld, omega, relaxtype);
|
|
|
|
updateState(dx, x, xw);
|
|
|
|
assemble(pvdt, x, xw);
|
|
|
|
residual_history.push_back(residuals());
|
|
|
|
// increase iteration counter
|
|
++it;
|
|
|
|
converged = getConvergence(dt,it);
|
|
}
|
|
|
|
if (!converged) {
|
|
// the runtime_error is caught by the AdaptiveTimeStepping
|
|
OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
|
|
return -1;
|
|
}
|
|
|
|
return linearIterations;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::ReservoirResidualQuant::ReservoirResidualQuant()
|
|
: accum(2, ADB::null())
|
|
, mflux( ADB::null())
|
|
, b ( ADB::null())
|
|
, head ( ADB::null())
|
|
, mob ( ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::SolutionState::SolutionState(const int np)
|
|
: pressure ( ADB::null())
|
|
, temperature( ADB::null())
|
|
, saturation(np, ADB::null())
|
|
, rs ( ADB::null())
|
|
, rv ( ADB::null())
|
|
, qs ( ADB::null())
|
|
, bhp ( ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
FullyImplicitBlackoilSolver<T>::
|
|
WellOps::WellOps(const Wells* wells)
|
|
: w2p(),
|
|
p2w()
|
|
{
|
|
if( wells )
|
|
{
|
|
w2p = M(wells->well_connpos[ wells->number_of_wells ], wells->number_of_wells);
|
|
p2w = M(wells->number_of_wells, wells->well_connpos[ wells->number_of_wells ]);
|
|
|
|
const int nw = wells->number_of_wells;
|
|
const int* const wpos = wells->well_connpos;
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
|
|
std::vector<Tri> scatter, gather;
|
|
scatter.reserve(wpos[nw]);
|
|
gather .reserve(wpos[nw]);
|
|
|
|
for (int w = 0, i = 0; w < nw; ++w) {
|
|
for (; i < wpos[ w + 1 ]; ++i) {
|
|
scatter.push_back(Tri(i, w, 1.0));
|
|
gather .push_back(Tri(w, i, 1.0));
|
|
}
|
|
}
|
|
|
|
w2p.setFromTriplets(scatter.begin(), scatter.end());
|
|
p2w.setFromTriplets(gather .begin(), gather .end());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
typename FullyImplicitBlackoilSolver<T>::SolutionState
|
|
FullyImplicitBlackoilSolver<T>::constantState(const BlackoilState& x,
|
|
const WellStateFullyImplicitBlackoil& xw)
|
|
{
|
|
auto state = variableState(x, xw);
|
|
|
|
// HACK: throw away the derivatives. this may not be the most
|
|
// performant way to do things, but it will make the state
|
|
// automatically consistent with variableState() (and doing
|
|
// things automatically is all the rage in this module ;)
|
|
state.pressure = ADB::constant(state.pressure.value());
|
|
state.temperature = ADB::constant(state.temperature.value());
|
|
state.rs = ADB::constant(state.rs.value());
|
|
state.rv = ADB::constant(state.rv.value());
|
|
for (int phaseIdx= 0; phaseIdx < x.numPhases(); ++ phaseIdx)
|
|
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
|
|
state.qs = ADB::constant(state.qs.value());
|
|
state.bhp = ADB::constant(state.bhp.value());
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
typename FullyImplicitBlackoilSolver<T>::SolutionState
|
|
FullyImplicitBlackoilSolver<T>::variableState(const BlackoilState& x,
|
|
const WellStateFullyImplicitBlackoil& xw)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = x.numPhases();
|
|
|
|
std::vector<V> vars0;
|
|
// p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions
|
|
vars0.reserve(np + 1);
|
|
// Initial pressure.
|
|
assert (not x.pressure().empty());
|
|
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
|
vars0.push_back(p);
|
|
|
|
// Initial saturation.
|
|
assert (not x.saturation().empty());
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
// We do not handle a Water/Gas situation correctly, guard against it.
|
|
assert (active_[ Oil]);
|
|
if (active_[ Water ]) {
|
|
const V sw = s.col(pu.phase_pos[ Water ]);
|
|
vars0.push_back(sw);
|
|
}
|
|
|
|
// store cell status in vectors
|
|
V isRs = V::Zero(nc,1);
|
|
V isRv = V::Zero(nc,1);
|
|
V isSg = V::Zero(nc,1);
|
|
|
|
if (active_[ Gas ]){
|
|
for (int c = 0; c < nc ; c++ ) {
|
|
switch (primalVariable_[c]) {
|
|
case PrimalVariables::RS:
|
|
isRs[c] = 1;
|
|
break;
|
|
|
|
case PrimalVariables::RV:
|
|
isRv[c] = 1;
|
|
break;
|
|
|
|
default:
|
|
isSg[c] = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// define new primary variable xvar depending on solution condition
|
|
V xvar(nc);
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
|
|
const V rv = Eigen::Map<const V>(& x.rv()[0], x.rv().size());
|
|
xvar = isRs*rs + isRv*rv + isSg*sg;
|
|
vars0.push_back(xvar);
|
|
}
|
|
|
|
|
|
// Initial well rates.
|
|
if( wellsActive() )
|
|
{
|
|
// Need to reshuffle well rates, from phase running fastest
|
|
// to wells running fastest.
|
|
const int nw = wells().number_of_wells;
|
|
|
|
// The transpose() below switches the ordering.
|
|
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
|
|
const V qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
|
vars0.push_back(qs);
|
|
|
|
// Initial well bottom-hole pressure.
|
|
assert (not xw.bhp().empty());
|
|
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
|
|
vars0.push_back(bhp);
|
|
}
|
|
else
|
|
{
|
|
// push null states for qs and bhp
|
|
vars0.push_back(V());
|
|
vars0.push_back(V());
|
|
}
|
|
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
|
|
SolutionState state(np);
|
|
|
|
// Pressure.
|
|
int nextvar = 0;
|
|
state.pressure = vars[ nextvar++ ];
|
|
|
|
// temperature
|
|
const V temp = Eigen::Map<const V>(& x.temperature()[0], x.temperature().size());
|
|
state.temperature = ADB::constant(temp);
|
|
|
|
// Saturations
|
|
const std::vector<int>& bpat = vars[0].blockPattern();
|
|
{
|
|
|
|
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
|
|
|
|
if (active_[ Water ]) {
|
|
ADB& sw = vars[ nextvar++ ];
|
|
state.saturation[pu.phase_pos[ Water ]] = sw;
|
|
so -= sw;
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
// Define Sg Rs and Rv in terms of xvar.
|
|
// Xvar is only defined if gas phase is active
|
|
const ADB& xvar = vars[ nextvar++ ];
|
|
ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ];
|
|
sg = isSg*xvar + isRv* so;
|
|
so -= sg;
|
|
|
|
if (active_[ Oil ]) {
|
|
// RS and RV is only defined if both oil and gas phase are active.
|
|
const ADB& sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: ADB::constant(V::Zero(nc, 1), bpat));
|
|
const std::vector<ADB> pressures = computePressures(state.pressure, sw, so, sg);
|
|
const ADB rsSat = fluidRsSat(pressures[ Oil ], so , cells_);
|
|
if (has_disgas_) {
|
|
state.rs = (1-isRs) * rsSat + isRs*xvar;
|
|
} else {
|
|
state.rs = rsSat;
|
|
}
|
|
const ADB rvSat = fluidRvSat(pressures[ Gas ], so , cells_);
|
|
if (has_vapoil_) {
|
|
state.rv = (1-isRv) * rvSat + isRv*xvar;
|
|
} else {
|
|
state.rv = rvSat;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
// Note that so is never a primary variable.
|
|
state.saturation[pu.phase_pos[ Oil ]] = so;
|
|
}
|
|
}
|
|
|
|
// Qs.
|
|
state.qs = vars[ nextvar++ ];
|
|
|
|
// Bhp.
|
|
state.bhp = vars[ nextvar++ ];
|
|
|
|
assert(nextvar == int(vars.size()));
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::computeAccum(const SolutionState& state,
|
|
const int aix )
|
|
{
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
const ADB& press = state.pressure;
|
|
const ADB& temp = state.temperature;
|
|
const std::vector<ADB>& sat = state.saturation;
|
|
const ADB& rs = state.rs;
|
|
const ADB& rv = state.rv;
|
|
|
|
const std::vector<ADB> pressures = computePressures(state);
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB pv_mult = poroMult(press);
|
|
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
const int pos = pu.phase_pos[ phase ];
|
|
rq_[pos].b = fluidReciprocFVF(phase, pressures[phase], temp, rs, rv, cond, cells_);
|
|
rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos];
|
|
// DUMP(rq_[pos].b);
|
|
// DUMP(rq_[pos].accum[aix]);
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
// Account for gas dissolved in oil and vaporized oil
|
|
const int po = pu.phase_pos[ Oil ];
|
|
const int pg = pu.phase_pos[ Gas ];
|
|
|
|
// Temporary copy to avoid contribution of dissolved gas in the vaporized oil
|
|
// when both dissolved gas and vaporized oil are present.
|
|
const ADB accum_gas_copy =rq_[pg].accum[aix];
|
|
|
|
rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix];
|
|
rq_[po].accum[aix] += state.rv * accum_gas_copy;
|
|
//DUMP(rq_[pg].accum[aix]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void FullyImplicitBlackoilSolver<T>::computeWellConnectionPressures(const SolutionState& state,
|
|
const WellStateFullyImplicitBlackoil& xw)
|
|
{
|
|
if( ! wellsActive() ) return ;
|
|
|
|
using namespace Opm::AutoDiffGrid;
|
|
// 1. Compute properties required by computeConnectionPressureDelta().
|
|
// Note that some of the complexity of this part is due to the function
|
|
// taking std::vector<double> arguments, and not Eigen objects.
|
|
const int nperf = wells().well_connpos[wells().number_of_wells];
|
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
|
// Compute b, rsmax, rvmax values for perforations.
|
|
const std::vector<ADB> pressures = computePressures(state);
|
|
const ADB perf_temp = subset(state.temperature, well_cells);
|
|
std::vector<PhasePresence> perf_cond(nperf);
|
|
const std::vector<PhasePresence>& pc = phaseCondition();
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
perf_cond[perf] = pc[well_cells[perf]];
|
|
}
|
|
const PhaseUsage& pu = fluid_.phaseUsage();
|
|
DataBlock b(nperf, pu.num_phases);
|
|
std::vector<double> rssat_perf(nperf, 0.0);
|
|
std::vector<double> rvsat_perf(nperf, 0.0);
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
const ADB perf_press = subset(pressures[ Water ], well_cells);
|
|
const ADB bw = fluid_.bWat(perf_press, perf_temp, well_cells);
|
|
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw.value();
|
|
}
|
|
assert(active_[Oil]);
|
|
const ADB perf_so = subset(state.saturation[pu.phase_pos[Oil]], well_cells);
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const ADB perf_rs = subset(state.rs, well_cells);
|
|
const ADB perf_press = subset(pressures[ Oil ], well_cells);
|
|
const ADB bo = fluid_.bOil(perf_press, perf_temp, perf_rs, perf_cond, well_cells);
|
|
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo.value();
|
|
const V rssat = fluidRsSat(perf_press.value(), perf_so.value(), well_cells);
|
|
rssat_perf.assign(rssat.data(), rssat.data() + nperf);
|
|
}
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const ADB perf_rv = subset(state.rv, well_cells);
|
|
const ADB perf_press = subset(pressures[ Gas ], well_cells);
|
|
const ADB bg = fluid_.bGas(perf_press, perf_temp, perf_rv, perf_cond, well_cells);
|
|
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg.value();
|
|
const V rvsat = fluidRvSat(perf_press.value(), perf_so.value(), well_cells);
|
|
rvsat_perf.assign(rvsat.data(), rvsat.data() + nperf);
|
|
}
|
|
// b is row major, so can just copy data.
|
|
std::vector<double> b_perf(b.data(), b.data() + nperf * pu.num_phases);
|
|
// Extract well connection depths.
|
|
const V depth = cellCentroidsZToEigen(grid_);
|
|
const V pdepth = subset(depth, well_cells);
|
|
std::vector<double> perf_depth(pdepth.data(), pdepth.data() + nperf);
|
|
// Surface density.
|
|
std::vector<double> surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases);
|
|
// Gravity
|
|
double grav = 0.0;
|
|
const double* g = geo_.gravity();
|
|
const int dim = dimensions(grid_);
|
|
if (g) {
|
|
// Guard against gravity in anything but last dimension.
|
|
for (int dd = 0; dd < dim - 1; ++dd) {
|
|
assert(g[dd] == 0.0);
|
|
}
|
|
grav = g[dim - 1];
|
|
}
|
|
|
|
// 2. Compute pressure deltas, and store the results.
|
|
std::vector<double> cdp = WellDensitySegmented
|
|
::computeConnectionPressureDelta(wells(), xw, fluid_.phaseUsage(),
|
|
b_perf, rssat_perf, rvsat_perf, perf_depth,
|
|
surf_dens, grav);
|
|
well_perforation_pressure_diffs_ = Eigen::Map<const V>(cdp.data(), nperf);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::
|
|
assemble(const V& pvdt,
|
|
const BlackoilState& x ,
|
|
WellStateFullyImplicitBlackoil& xw )
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
// Create the primary variables.
|
|
SolutionState state = variableState(x, xw);
|
|
|
|
// DISKVAL(state.pressure);
|
|
// DISKVAL(state.saturation[0]);
|
|
// DISKVAL(state.saturation[1]);
|
|
// DISKVAL(state.saturation[2]);
|
|
// DISKVAL(state.rs);
|
|
// DISKVAL(state.rv);
|
|
// DISKVAL(state.qs);
|
|
// DISKVAL(state.bhp);
|
|
|
|
// -------- Mass balance equations --------
|
|
|
|
// Compute b_p and the accumulation term b_p*s_p for each phase,
|
|
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
|
|
// These quantities are stored in rq_[phase].accum[1].
|
|
// The corresponding accumulation terms from the start of
|
|
// the timestep (b^0_p*s^0_p etc.) were already computed
|
|
// in step() and stored in rq_[phase].accum[0].
|
|
computeAccum(state, 1);
|
|
|
|
// Set up the common parts of the mass balance equations
|
|
// for each active phase.
|
|
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
|
|
const std::vector<ADB> kr = computeRelPerm(state);
|
|
const std::vector<ADB> pressures = computePressures(state);
|
|
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
|
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], pressures[canph_[phaseIdx]], state);
|
|
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
|
|
// std::cout << kr[phase];
|
|
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
|
|
// std::cout << rq_[phase].mflux;
|
|
|
|
residual_.material_balance_eq[ phaseIdx ] =
|
|
pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
|
|
+ ops_.div*rq_[phaseIdx].mflux;
|
|
|
|
|
|
// DUMP(ops_.div*rq_[phase].mflux);
|
|
// DUMP(residual_.material_balance_eq[phase]);
|
|
}
|
|
|
|
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
|
|
|
|
// Add the extra (flux) terms to the mass balance equations
|
|
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
|
|
// The extra terms in the accumulation part of the equation are already handled.
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
|
|
|
const UpwindSelector<double> upwindOil(grid_, ops_,
|
|
rq_[po].head.value());
|
|
const ADB rs_face = upwindOil.select(state.rs);
|
|
|
|
const UpwindSelector<double> upwindGas(grid_, ops_,
|
|
rq_[pg].head.value());
|
|
const ADB rv_face = upwindGas.select(state.rv);
|
|
|
|
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
|
|
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
|
|
|
|
// DUMP(residual_.material_balance_eq[ Gas ]);
|
|
|
|
}
|
|
|
|
// Note: updateWellControls() can change all its arguments if
|
|
// a well control is switched.
|
|
updateWellControls(state.bhp, state.qs, xw);
|
|
V aliveWells;
|
|
addWellEq(state, xw, aliveWells);
|
|
addWellControlEq(state, xw, aliveWells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
void FullyImplicitBlackoilSolver<T>::addWellEq(const SolutionState& state,
|
|
WellStateFullyImplicitBlackoil& xw,
|
|
V& aliveWells)
|
|
{
|
|
if( ! wellsActive() ) return ;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
V Tw = Eigen::Map<const V>(wells().WI, nperf);
|
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
|
|
|
// pressure diffs computed already (once per step, not changing per iteration)
|
|
const V& cdp = well_perforation_pressure_diffs_;
|
|
|
|
// Extract variables for perforation cell pressures
|
|
// and corresponding perforation well pressures.
|
|
const ADB p_perfcell = subset(state.pressure, well_cells);
|
|
|
|
// DUMPVAL(p_perfcell);
|
|
// DUMPVAL(state.bhp);
|
|
// DUMPVAL(ADB::constant(cdp));
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
const ADB drawdown = p_perfcell - (wops_.w2p * state.bhp + cdp);
|
|
|
|
// current injecting connections
|
|
auto connInjInx = drawdown.value() < 0;
|
|
|
|
// injector == 1, producer == 0
|
|
V isInj = V::Zero(nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
if (wells().type[w] == INJECTOR) {
|
|
isInj[w] = 1;
|
|
}
|
|
}
|
|
|
|
// // A cross-flow connection is defined as a connection which has opposite
|
|
// // flow-direction to the well total flow
|
|
// V isInjPerf = (wops_.w2p * isInj);
|
|
// auto crossFlowConns = (connInjInx != isInjPerf);
|
|
|
|
// bool allowCrossFlow = true;
|
|
|
|
// if (not allowCrossFlow) {
|
|
// auto closedConns = crossFlowConns;
|
|
// for (int c = 0; c < nperf; ++c) {
|
|
// if (closedConns[c]) {
|
|
// Tw[c] = 0;
|
|
// }
|
|
// }
|
|
// connInjInx = !closedConns;
|
|
// }
|
|
// TODO: not allow for crossflow
|
|
|
|
|
|
V isInjInx = V::Zero(nperf);
|
|
V isNotInjInx = V::Zero(nperf);
|
|
for (int c = 0; c < nperf; ++c){
|
|
if (connInjInx[c])
|
|
isInjInx[c] = 1;
|
|
else
|
|
isNotInjInx[c] = 1;
|
|
}
|
|
|
|
|
|
// HANDLE FLOW INTO WELLBORE
|
|
|
|
// compute phase volumerates standard conditions
|
|
std::vector<ADB> cq_ps(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const ADB& wellcell_mob = subset ( rq_[phase].mob, well_cells);
|
|
const ADB cq_p = -(isNotInjInx * Tw) * (wellcell_mob * drawdown);
|
|
cq_ps[phase] = subset(rq_[phase].b,well_cells) * cq_p;
|
|
}
|
|
if (active_[Oil] && active_[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
ADB cq_psOil = cq_ps[oilpos];
|
|
ADB cq_psGas = cq_ps[gaspos];
|
|
cq_ps[gaspos] += subset(state.rs,well_cells) * cq_psOil;
|
|
cq_ps[oilpos] += subset(state.rv,well_cells) * cq_psGas;
|
|
}
|
|
|
|
// phase rates at std. condtions
|
|
std::vector<ADB> q_ps(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
q_ps[phase] = wops_.p2w * cq_ps[phase];
|
|
}
|
|
|
|
// total rates at std
|
|
ADB qt_s = ADB::constant(V::Zero(nw), state.bhp.blockPattern());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
qt_s += subset(state.qs, Span(nw, 1, phase*nw));
|
|
}
|
|
|
|
// compute avg. and total wellbore phase volumetric rates at std. conds
|
|
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
|
|
std::vector<ADB> wbq(np, ADB::null());
|
|
ADB wbqt = ADB::constant(V::Zero(nw), state.pressure.blockPattern());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const int pos = pu.phase_pos[phase];
|
|
wbq[phase] = (isInj * compi.col(pos)) * qt_s - q_ps[phase];
|
|
wbqt += wbq[phase];
|
|
}
|
|
// DUMPVAL(wbqt);
|
|
|
|
// check for dead wells
|
|
aliveWells = V::Constant(nw, 1.0);
|
|
for (int w = 0; w < nw; ++w) {
|
|
if (wbqt.value()[w] == 0) {
|
|
aliveWells[w] = 0.0;
|
|
}
|
|
}
|
|
// compute wellbore mixture at std conds
|
|
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
|
|
std::vector<ADB> mix_s(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const int pos = pu.phase_pos[phase];
|
|
mix_s[phase] = notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
|
|
}
|
|
|
|
|
|
// HANDLE FLOW OUT FROM WELLBORE
|
|
|
|
// Total mobilities
|
|
ADB mt = subset(rq_[0].mob,well_cells);
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
mt += subset(rq_[phase].mob,well_cells);
|
|
}
|
|
|
|
// DUMPVAL(ADB::constant(isInjInx));
|
|
// DUMPVAL(ADB::constant(Tw));
|
|
// DUMPVAL(mt);
|
|
// DUMPVAL(drawdown);
|
|
|
|
// injection connections total volumerates
|
|
ADB cqt_i = -(isInjInx * Tw) * (mt * drawdown);
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
ADB volRat = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
|
|
std::vector<ADB> cmix_s(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
cmix_s[phase] = wops_.w2p * mix_s[phase];
|
|
}
|
|
|
|
ADB well_rv = subset(state.rv,well_cells);
|
|
ADB well_rs = subset(state.rs,well_cells);
|
|
ADB d = V::Constant(nperf,1.0) - well_rv * well_rs;
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
ADB tmp = cmix_s[phase];
|
|
|
|
if (phase == Oil && active_[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
tmp = tmp - subset(state.rv,well_cells) * cmix_s[gaspos] / d;
|
|
}
|
|
if (phase == Gas && active_[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
tmp = tmp - subset(state.rs,well_cells) * cmix_s[oilpos] / d;
|
|
}
|
|
volRat += tmp / subset(rq_[phase].b,well_cells);
|
|
}
|
|
|
|
// DUMPVAL(cqt_i);
|
|
// DUMPVAL(volRat);
|
|
|
|
// injecting connections total volumerates at std cond
|
|
ADB cqt_is = cqt_i/volRat;
|
|
|
|
// connection phase volumerates at std cond
|
|
std::vector<ADB> cq_s(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
cq_s[phase] = cq_ps[phase] + (wops_.w2p * mix_s[phase])*cqt_is;
|
|
}
|
|
|
|
// DUMPVAL(mix_s[2]);
|
|
// DUMPVAL(cq_ps[2]);
|
|
|
|
// Add well contributions to mass balance equations
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc);
|
|
}
|
|
|
|
|
|
// Add WELL EQUATIONS
|
|
ADB qs = state.qs;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
|
|
|
|
}
|
|
|
|
|
|
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
|
|
}
|
|
|
|
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
|
|
xw.perfPhaseRates() = cq_d;
|
|
|
|
residual_.well_flux_eq = qs;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
namespace
|
|
{
|
|
double rateToCompare(const ADB& well_phase_flow_rate,
|
|
const int well,
|
|
const int num_phases,
|
|
const double* distr)
|
|
{
|
|
const int num_wells = well_phase_flow_rate.size() / num_phases;
|
|
double rate = 0.0;
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
// Important: well_phase_flow_rate is ordered with all rates for first
|
|
// phase coming first, then all for second phase etc.
|
|
rate += well_phase_flow_rate.value()[well + phase*num_wells] * distr[phase];
|
|
}
|
|
return rate;
|
|
}
|
|
|
|
bool constraintBroken(const ADB& bhp,
|
|
const ADB& well_phase_flow_rate,
|
|
const int well,
|
|
const int num_phases,
|
|
const WellType& well_type,
|
|
const WellControls* wc,
|
|
const int ctrl_index)
|
|
{
|
|
const WellControlType ctrl_type = well_controls_iget_type(wc, ctrl_index);
|
|
const double target = well_controls_iget_target(wc, ctrl_index);
|
|
const double* distr = well_controls_iget_distr(wc, ctrl_index);
|
|
|
|
bool broken = false;
|
|
|
|
switch (well_type) {
|
|
case INJECTOR:
|
|
{
|
|
switch (ctrl_type) {
|
|
case BHP:
|
|
broken = bhp.value()[well] > target;
|
|
break;
|
|
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
broken = rateToCompare(well_phase_flow_rate,
|
|
well, num_phases, distr) > target;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PRODUCER:
|
|
{
|
|
switch (ctrl_type) {
|
|
case BHP:
|
|
broken = bhp.value()[well] < target;
|
|
break;
|
|
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
// Note that the rates compared below are negative,
|
|
// so breaking the constraints means: too high flow rate
|
|
// (as for injection).
|
|
broken = rateToCompare(well_phase_flow_rate,
|
|
well, num_phases, distr) < target;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
OPM_THROW(std::logic_error, "Can only handle INJECTOR and PRODUCER wells.");
|
|
}
|
|
|
|
return broken;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void FullyImplicitBlackoilSolver<T>::updateWellControls(ADB& bhp,
|
|
ADB& well_phase_flow_rate,
|
|
WellStateFullyImplicitBlackoil& xw) const
|
|
{
|
|
if( ! wellsActive() ) return ;
|
|
|
|
std::string modestring[3] = { "BHP", "RESERVOIR_RATE", "SURFACE_RATE" };
|
|
// Find, for each well, if any constraints are broken. If so,
|
|
// switch control to first broken constraint.
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
bool bhp_changed = false;
|
|
bool rates_changed = false;
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
const int current = xw.currentControls()[w];
|
|
// Loop over all controls except the current one, and also
|
|
// skip any RESERVOIR_RATE controls, since we cannot
|
|
// handle those.
|
|
const int nwc = well_controls_get_num(wc);
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (ctrl_index == current) {
|
|
// This is the currently used control, so it is
|
|
// used as an equation. So this is not used as an
|
|
// inequality constraint, and therefore skipped.
|
|
continue;
|
|
}
|
|
if (constraintBroken(bhp, well_phase_flow_rate, w, np, wells().type[w], wc, ctrl_index)) {
|
|
// ctrl_index will be the index of the broken constraint after the loop.
|
|
break;
|
|
}
|
|
}
|
|
if (ctrl_index != nwc) {
|
|
// Constraint number ctrl_index was broken, switch to it.
|
|
std::cout << "Switching control mode for well " << wells().name[w]
|
|
<< " from " << modestring[well_controls_iget_type(wc, current)]
|
|
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
|
|
xw.currentControls()[w] = ctrl_index;
|
|
// Also updating well state and primary variables.
|
|
// We can only be switching to BHP and SURFACE_RATE
|
|
// controls since we do not support RESERVOIR_RATE.
|
|
const double target = well_controls_iget_target(wc, ctrl_index);
|
|
const double* distr = well_controls_iget_distr(wc, ctrl_index);
|
|
switch (well_controls_iget_type(wc, ctrl_index)) {
|
|
case BHP:
|
|
xw.bhp()[w] = target;
|
|
bhp_changed = true;
|
|
break;
|
|
|
|
case RESERVOIR_RATE:
|
|
// No direct change to any observable quantity at
|
|
// surface condition. In this case, use existing
|
|
// flow rates as initial conditions as reservoir
|
|
// rate acts only in aggregate.
|
|
//
|
|
// Just record the fact that we need to recompute
|
|
// the 'well_phase_flow_rate'.
|
|
rates_changed = true;
|
|
break;
|
|
|
|
case SURFACE_RATE:
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
xw.wellRates()[np*w + phase] = target * distr[phase];
|
|
}
|
|
}
|
|
rates_changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update primary variables, if necessary.
|
|
if (bhp_changed) {
|
|
ADB::V new_bhp = Eigen::Map<ADB::V>(xw.bhp().data(), nw);
|
|
bhp = ADB::function(new_bhp, bhp.derivative());
|
|
}
|
|
if (rates_changed) {
|
|
// Need to reshuffle well rates, from phase running fastest
|
|
// to wells running fastest.
|
|
// The transpose() below switches the ordering.
|
|
const DataBlock wrates = Eigen::Map<const DataBlock>(xw.wellRates().data(), nw, np).transpose();
|
|
const ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
|
well_phase_flow_rate = ADB::function(new_qs, well_phase_flow_rate.derivative());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void FullyImplicitBlackoilSolver<T>::addWellControlEq(const SolutionState& state,
|
|
const WellStateFullyImplicitBlackoil& xw,
|
|
const V& aliveWells)
|
|
{
|
|
if( ! wellsActive() ) return;
|
|
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
|
|
V bhp_targets = V::Zero(nw);
|
|
V rate_targets = V::Zero(nw);
|
|
M rate_distr(nw, np*nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
const int current = xw.currentControls()[w];
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case BHP:
|
|
{
|
|
bhp_targets (w) = well_controls_iget_target(wc, current);
|
|
rate_targets(w) = -1e100;
|
|
}
|
|
break;
|
|
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
{
|
|
// RESERVOIR and SURFACE rates look the same, from a
|
|
// high-level point of view, in the system of
|
|
// simultaneous linear equations.
|
|
|
|
const double* const distr =
|
|
well_controls_iget_distr(wc, current);
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
rate_distr.insert(w, p*nw + w) = distr[p];
|
|
}
|
|
|
|
bhp_targets (w) = -1.0e100;
|
|
rate_targets(w) = well_controls_iget_target(wc, current);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
const ADB bhp_residual = state.bhp - bhp_targets;
|
|
const ADB rate_residual = rate_distr * state.qs - rate_targets;
|
|
// Choose bhp residual for positive bhp targets.
|
|
Selector<double> bhp_selector(bhp_targets);
|
|
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
|
|
// For wells that are dead (not flowing), and therefore not communicating
|
|
// with the reservoir, we set the equation to be equal to the well's total
|
|
// flow. This will be a solution only if the target rate is also zero.
|
|
M rate_summer(nw, np*nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rate_summer.insert(w, phase*nw + w) = 1.0;
|
|
}
|
|
}
|
|
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
|
|
residual_.well_eq = alive_selector.select(residual_.well_eq, rate_summer * state.qs);
|
|
// DUMP(residual_.well_eq);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
V FullyImplicitBlackoilSolver<T>::solveJacobianSystem() const
|
|
{
|
|
return linsolver_.computeNewtonIncrement(residual_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
struct Chop01 {
|
|
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
|
|
};
|
|
|
|
double infinityNorm( const ADB& a )
|
|
{
|
|
if( a.value().size() > 0 ) {
|
|
return a.value().matrix().lpNorm<Eigen::Infinity> ();
|
|
}
|
|
else { // this situation can occur when no wells are present
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void FullyImplicitBlackoilSolver<T>::updateState(const V& dx,
|
|
BlackoilState& state,
|
|
WellStateFullyImplicitBlackoil& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int np = fluid_.numPhases();
|
|
const int nc = numCells(grid_);
|
|
const int nw = wellsActive() ? wells().number_of_wells : 0;
|
|
const V null;
|
|
assert(null.size() == 0);
|
|
const V zero = V::Zero(nc);
|
|
const V one = V::Constant(nc, 1.0);
|
|
const SolutionState sol_state_old = constantState(state, well_state);
|
|
const std::vector<ADB> pressures_old = computePressures(sol_state_old);
|
|
|
|
// store cell status in vectors
|
|
V isRs = V::Zero(nc,1);
|
|
V isRv = V::Zero(nc,1);
|
|
V isSg = V::Zero(nc,1);
|
|
if (active_[Gas]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
switch (primalVariable_[c]) {
|
|
case PrimalVariables::RS:
|
|
isRs[c] = 1;
|
|
break;
|
|
|
|
case PrimalVariables::RV:
|
|
isRv[c] = 1;
|
|
break;
|
|
|
|
default:
|
|
isSg[c] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extract parts of dx corresponding to each part.
|
|
const V dp = subset(dx, Span(nc));
|
|
int varstart = nc;
|
|
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
|
|
varstart += dsw.size();
|
|
|
|
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
|
|
varstart += dxvar.size();
|
|
|
|
const V dqs = subset(dx, Span(np*nw, 1, varstart));
|
|
varstart += dqs.size();
|
|
const V dbhp = subset(dx, Span(nw, 1, varstart));
|
|
varstart += dbhp.size();
|
|
assert(varstart == dx.size());
|
|
|
|
// Pressure update.
|
|
const double dpmaxrel = dpMaxRel();
|
|
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V absdpmax = dpmaxrel*p_old.abs();
|
|
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
|
|
const V p = (p_old - dp_limited).max(zero);
|
|
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
|
|
|
|
|
// Saturation updates.
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
|
const double dsmax = dsMax();
|
|
V so;
|
|
V sw;
|
|
V sg;
|
|
|
|
{
|
|
V maxVal = zero;
|
|
V dso = zero;
|
|
if (active_[Water]){
|
|
maxVal = dsw.abs().max(maxVal);
|
|
dso = dso - dsw;
|
|
}
|
|
|
|
V dsg;
|
|
if (active_[Gas]){
|
|
dsg = isSg * dxvar - isRv * dsw;
|
|
maxVal = dsg.abs().max(maxVal);
|
|
dso = dso - dsg;
|
|
}
|
|
|
|
maxVal = dso.abs().max(maxVal);
|
|
|
|
V step = dsmax/maxVal;
|
|
step = step.min(1.);
|
|
|
|
if (active_[Water]) {
|
|
const int pos = pu.phase_pos[ Water ];
|
|
const V sw_old = s_old.col(pos);
|
|
sw = sw_old - step * dsw;
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
const int pos = pu.phase_pos[ Gas ];
|
|
const V sg_old = s_old.col(pos);
|
|
sg = sg_old - step * dsg;
|
|
}
|
|
|
|
const int pos = pu.phase_pos[ Oil ];
|
|
const V so_old = s_old.col(pos);
|
|
so = so_old - step * dso;
|
|
}
|
|
|
|
// Appleyard chop process.
|
|
auto ixg = sg < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixg[c]) {
|
|
sw[c] = sw[c] / (1-sg[c]);
|
|
so[c] = so[c] / (1-sg[c]);
|
|
sg[c] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
auto ixo = so < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixo[c]) {
|
|
sw[c] = sw[c] / (1-so[c]);
|
|
sg[c] = sg[c] / (1-so[c]);
|
|
so[c] = 0;
|
|
}
|
|
}
|
|
|
|
auto ixw = sw < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixw[c]) {
|
|
so[c] = so[c] / (1-sw[c]);
|
|
sg[c] = sg[c] / (1-sw[c]);
|
|
sw[c] = 0;
|
|
}
|
|
}
|
|
|
|
const V sumSat = sw + so + sg;
|
|
sw = sw / sumSat;
|
|
so = so / sumSat;
|
|
sg = sg / sumSat;
|
|
|
|
// Update the state
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
|
|
}
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
const int pos = pu.phase_pos[ Oil ];
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pos] = so[c];
|
|
}
|
|
}
|
|
|
|
// Update rs and rv
|
|
const double drmaxrel = drMaxRel();
|
|
V rs;
|
|
if (has_disgas_) {
|
|
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
|
|
const V drs = isRs * dxvar;
|
|
const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drmaxrel);
|
|
rs = rs_old - drs_limited;
|
|
}
|
|
V rv;
|
|
if (has_vapoil_) {
|
|
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
|
|
const V drv = isRv * dxvar;
|
|
const V drv_limited = sign(drv) * drv.abs().min(rv_old.abs()*drmaxrel);
|
|
rv = rv_old - drv_limited;
|
|
}
|
|
|
|
|
|
// Sg is used as primal variable for water only cells.
|
|
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
auto watOnly = sw > (1 - epsilon);
|
|
|
|
// phase translation sg <-> rs
|
|
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
|
|
|
|
if (has_disgas_) {
|
|
const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_);
|
|
const V rsSat = fluidRsSat(p, so, cells_);
|
|
// The obvious case
|
|
auto hasGas = (sg > 0 && isRs == 0);
|
|
|
|
// Set oil saturated if previous rs is sufficiently large
|
|
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
|
|
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
|
|
auto useSg = watOnly || hasGas || gasVaporized;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (useSg[c]) {
|
|
rs[c] = rsSat[c];
|
|
} else {
|
|
primalVariable_[c] = PrimalVariables::RS;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// phase transitions so <-> rv
|
|
if (has_vapoil_) {
|
|
|
|
// The gas pressure is needed for the rvSat calculations
|
|
const SolutionState sol_state = constantState(state, well_state);
|
|
const std::vector<ADB> pressures = computePressures(sol_state);
|
|
const V rvSat0 = fluidRvSat(pressures_old[ Gas ].value(), s_old.col(pu.phase_pos[Oil]), cells_);
|
|
const V rvSat = fluidRvSat(pressures[ Gas ].value(), so, cells_);
|
|
|
|
// The obvious case
|
|
auto hasOil = (so > 0 && isRv == 0);
|
|
|
|
// Set oil saturated if previous rv is sufficiently large
|
|
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
|
|
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) );
|
|
auto useSg = watOnly || hasOil || oilCondensed;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (useSg[c]) {
|
|
rv[c] = rvSat[c];
|
|
} else {
|
|
primalVariable_[c] = PrimalVariables::RV;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Update the state
|
|
if (has_disgas_) {
|
|
std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin());
|
|
}
|
|
|
|
if (has_vapoil_) {
|
|
std::copy(&rv[0], &rv[0] + nc, state.rv().begin());
|
|
}
|
|
|
|
if( wellsActive() )
|
|
{
|
|
// Qs update.
|
|
// Since we need to update the wellrates, that are ordered by wells,
|
|
// from dqs which are ordered by phase, the simplest is to compute
|
|
// dwr, which is the data from dqs but ordered by wells.
|
|
const DataBlock wwr = Eigen::Map<const DataBlock>(dqs.data(), np, nw).transpose();
|
|
const V dwr = Eigen::Map<const V>(wwr.data(), nw*np);
|
|
const V wr_old = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np);
|
|
const V wr = wr_old - dwr;
|
|
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
|
|
|
|
// Bhp update.
|
|
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel);
|
|
const V bhp = bhp_old - dbhp_limited;
|
|
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
|
|
}
|
|
|
|
// Update phase conditions used for property calculations.
|
|
updatePhaseCondFromPrimalVariable();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver<T>::computeRelPerm(const SolutionState& state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const std::vector<int>& bpat = state.pressure.blockPattern();
|
|
|
|
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: null);
|
|
|
|
const ADB so = (active_[ Oil ]
|
|
? state.saturation[ pu.phase_pos[ Oil ] ]
|
|
: null);
|
|
|
|
const ADB sg = (active_[ Gas ]
|
|
? state.saturation[ pu.phase_pos[ Gas ] ]
|
|
: null);
|
|
|
|
return fluid_.relperm(sw, so, sg, cells_);
|
|
}
|
|
|
|
|
|
template<class T>
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver<T>::computePressures(const SolutionState& state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const std::vector<int>& bpat = state.pressure.blockPattern();
|
|
|
|
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB& sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: null);
|
|
|
|
const ADB& so = (active_[ Oil ]
|
|
? state.saturation[ pu.phase_pos[ Oil ] ]
|
|
: null);
|
|
|
|
const ADB& sg = (active_[ Gas ]
|
|
? state.saturation[ pu.phase_pos[ Gas ] ]
|
|
: null);
|
|
return computePressures(state.pressure, sw, so, sg);
|
|
|
|
|
|
}
|
|
template <class T>
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver<T>::
|
|
computePressures(const ADB& po,
|
|
const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg) const
|
|
{
|
|
// convert the pressure offsets to the capillary pressures
|
|
std::vector<ADB> pressure = fluid_.capPress(sw, so, sg, cells_);
|
|
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
|
|
// The reference pressure is always the liquid phase (oil) pressure.
|
|
if (phaseIdx == BlackoilPhases::Liquid)
|
|
continue;
|
|
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
|
|
}
|
|
|
|
// Since pcow = po - pw, but pcog = pg - po,
|
|
// we have
|
|
// pw = po - pcow
|
|
// pg = po + pcgo
|
|
// This is an unfortunate inconsistency, but a convention we must handle.
|
|
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
|
|
if (phaseIdx == BlackoilPhases::Aqua) {
|
|
pressure[phaseIdx] = po - pressure[phaseIdx];
|
|
} else {
|
|
pressure[phaseIdx] += po;
|
|
}
|
|
}
|
|
|
|
return pressure;
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver<T>::computeRelPermWells(const SolutionState& state,
|
|
const DataBlock& well_s,
|
|
const std::vector<int>& well_cells) const
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const std::vector<int>& bpat = state.pressure.blockPattern();
|
|
|
|
const ADB null = ADB::constant(V::Zero(nperf), bpat);
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB sw = (active_[ Water ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat)
|
|
: null);
|
|
|
|
const ADB so = (active_[ Oil ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat)
|
|
: null);
|
|
|
|
const ADB sg = (active_[ Gas ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat)
|
|
: null);
|
|
|
|
return fluid_.relperm(sw, so, sg, well_cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& phasePressure,
|
|
const SolutionState& state)
|
|
{
|
|
const int canonicalPhaseIdx = canph_[ actph ];
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB tr_mult = transMult(state.pressure);
|
|
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_);
|
|
|
|
rq_[ actph ].mob = tr_mult * kr / mu;
|
|
|
|
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_);
|
|
|
|
ADB& head = rq_[ actph ].head;
|
|
|
|
// compute gravity potensial using the face average as in eclipse and MRST
|
|
const ADB rhoavg = ops_.caver * rho;
|
|
|
|
ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
|
|
|
if (use_threshold_pressure_) {
|
|
applyThresholdPressures(dp);
|
|
}
|
|
|
|
head = transi*dp;
|
|
//head = transi*(ops_.ngrad * phasePressure) + gflux;
|
|
|
|
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
|
|
|
const ADB& b = rq_[ actph ].b;
|
|
const ADB& mob = rq_[ actph ].mob;
|
|
rq_[ actph ].mflux = upwind.select(b * mob) * head;
|
|
// DUMP(rq_[ actph ].mob);
|
|
// DUMP(rq_[ actph ].mflux);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::applyThresholdPressures(ADB& dp)
|
|
{
|
|
// We support reversible threshold pressures only.
|
|
// Method: if the potential difference is lower (in absolute
|
|
// value) than the threshold for any face, then the potential
|
|
// (and derivatives) is set to zero. If it is above the
|
|
// threshold, the threshold pressure is subtracted from the
|
|
// absolute potential (the potential is moved towards zero).
|
|
|
|
// Identify the set of faces where the potential is under the
|
|
// threshold, that shall have zero flow. Storing the bool
|
|
// Array as a V (a double Array) with 1 and 0 elements, a
|
|
// 1 where flow is allowed, a 0 where it is not.
|
|
const V high_potential = (dp.value().abs() >= threshold_pressures_by_interior_face_).template cast<double>();
|
|
|
|
// Create a sparse vector that nullifies the low potential elements.
|
|
const M keep_high_potential = spdiag(high_potential);
|
|
|
|
// Find the current sign for the threshold modification
|
|
const V sign_dp = sign(dp.value());
|
|
const V threshold_modification = sign_dp * threshold_pressures_by_interior_face_;
|
|
|
|
// Modify potential and nullify where appropriate.
|
|
dp = keep_high_potential * (dp - threshold_modification);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
double
|
|
FullyImplicitBlackoilSolver<T>::residualNorm() const
|
|
{
|
|
double globalNorm = 0;
|
|
std::vector<ADB>::const_iterator quantityIt = residual_.material_balance_eq.begin();
|
|
const std::vector<ADB>::const_iterator endQuantityIt = residual_.material_balance_eq.end();
|
|
for (; quantityIt != endQuantityIt; ++quantityIt) {
|
|
const double quantityResid = (*quantityIt).value().matrix().norm();
|
|
if (!std::isfinite(quantityResid)) {
|
|
const int trouble_phase = quantityIt - residual_.material_balance_eq.begin();
|
|
OPM_THROW(Opm::NumericalProblem,
|
|
"Encountered a non-finite residual in material balance equation "
|
|
<< trouble_phase);
|
|
}
|
|
globalNorm = std::max(globalNorm, quantityResid);
|
|
}
|
|
globalNorm = std::max(globalNorm, residual_.well_flux_eq.value().matrix().norm());
|
|
globalNorm = std::max(globalNorm, residual_.well_eq.value().matrix().norm());
|
|
|
|
return globalNorm;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
std::vector<double>
|
|
FullyImplicitBlackoilSolver<T>::residuals() const
|
|
{
|
|
std::vector<double> residual;
|
|
|
|
std::vector<ADB>::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
|
|
const std::vector<ADB>::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
|
|
|
|
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
|
|
const double massBalanceResid = infinityNorm( (*massBalanceIt) );
|
|
if (!std::isfinite(massBalanceResid)) {
|
|
OPM_THROW(Opm::NumericalProblem,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residual.push_back(massBalanceResid);
|
|
}
|
|
|
|
// the following residuals are not used in the oscillation detection now
|
|
const double wellFluxResid = infinityNorm( residual_.well_flux_eq );
|
|
if (!std::isfinite(wellFluxResid)) {
|
|
OPM_THROW(Opm::NumericalProblem,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residual.push_back(wellFluxResid);
|
|
|
|
const double wellResid = infinityNorm( residual_.well_eq );
|
|
if (!std::isfinite(wellResid)) {
|
|
OPM_THROW(Opm::NumericalProblem,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residual.push_back(wellResid);
|
|
|
|
return residual;
|
|
}
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
|
|
const int it, const double relaxRelTol,
|
|
bool& oscillate, bool& stagnate) const
|
|
{
|
|
// The detection of oscillation in two primary variable results in the report of the detection
|
|
// of oscillation for the solver.
|
|
// Only the saturations are used for oscillation detection for the black oil model.
|
|
// Stagnate is not used for any treatment here.
|
|
|
|
if ( it < 2 ) {
|
|
oscillate = false;
|
|
stagnate = false;
|
|
return;
|
|
}
|
|
|
|
stagnate = true;
|
|
int oscillatePhase = 0;
|
|
const std::vector<double>& F0 = residual_history[it];
|
|
const std::vector<double>& F1 = residual_history[it - 1];
|
|
const std::vector<double>& F2 = residual_history[it - 2];
|
|
for (int p= 0; p < fluid_.numPhases(); ++p){
|
|
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
|
|
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
|
|
|
|
oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2);
|
|
|
|
// Process is 'stagnate' unless at least one phase
|
|
// exhibits significant residual change.
|
|
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
|
|
}
|
|
|
|
oscillate = (oscillatePhase > 1);
|
|
}
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::stablizeNewton(V& dx, V& dxOld, const double omega,
|
|
const RelaxType relax_type) const
|
|
{
|
|
// The dxOld is updated with dx.
|
|
// If omega is equal to 1., no relaxtion will be appiled.
|
|
|
|
const V tempDxOld = dxOld;
|
|
dxOld = dx;
|
|
|
|
switch (relax_type) {
|
|
case DAMPEN:
|
|
if (omega == 1.) {
|
|
return;
|
|
}
|
|
dx = dx*omega;
|
|
return;
|
|
case SOR:
|
|
if (omega == 1.) {
|
|
return;
|
|
}
|
|
dx = dx*omega + (1.-omega)*tempDxOld;
|
|
return;
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
template<class T>
|
|
bool
|
|
FullyImplicitBlackoilSolver<T>::getConvergence(const double dt, const int iteration)
|
|
{
|
|
const double tol_mb = 1.0e-7;
|
|
const double tol_cnv = 1.0e-3;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
const V pv = geo_.poreVolume();
|
|
const double pvSum = pv.sum();
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
double CNVW = 0.;
|
|
double CNVO = 0.;
|
|
double CNVG = 0.;
|
|
|
|
double RW_sum = 0.;
|
|
double RO_sum = 0.;
|
|
double RG_sum = 0.;
|
|
|
|
double BW_avg = 0.;
|
|
double BO_avg = 0.;
|
|
double BG_avg = 0.;
|
|
|
|
if (active_[Water]) {
|
|
const int pos = pu.phase_pos[Water];
|
|
const ADB& tempBW = rq_[pos].b;
|
|
V BW = 1./tempBW.value();
|
|
V RW = residual_.material_balance_eq[Water].value();
|
|
BW_avg = BW.sum()/nc;
|
|
const V tempV = RW.abs()/pv;
|
|
|
|
CNVW = BW_avg * dt * tempV.maxCoeff();
|
|
RW_sum = RW.sum();
|
|
}
|
|
|
|
if (active_[Oil]) {
|
|
// Omit the disgas here. We should add it.
|
|
const int pos = pu.phase_pos[Oil];
|
|
const ADB& tempBO = rq_[pos].b;
|
|
V BO = 1./tempBO.value();
|
|
V RO = residual_.material_balance_eq[Oil].value();
|
|
BO_avg = BO.sum()/nc;
|
|
const V tempV = RO.abs()/pv;
|
|
|
|
CNVO = BO_avg * dt * tempV.maxCoeff();
|
|
RO_sum = RO.sum();
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
// Omit the vapoil here. We should add it.
|
|
const int pos = pu.phase_pos[Gas];
|
|
const ADB& tempBG = rq_[pos].b;
|
|
V BG = 1./tempBG.value();
|
|
V RG = residual_.material_balance_eq[Gas].value();
|
|
BG_avg = BG.sum()/nc;
|
|
const V tempV = RG.abs()/pv;
|
|
|
|
CNVG = BG_avg * dt * tempV.maxCoeff();
|
|
RG_sum = RG.sum();
|
|
}
|
|
|
|
const double mass_balance_residual_water = fabs(BW_avg*RW_sum) * dt / pvSum;
|
|
const double mass_balance_residual_oil = fabs(BO_avg*RO_sum) * dt / pvSum;
|
|
const double mass_balance_residual_gas = fabs(BG_avg*RG_sum) * dt / pvSum;
|
|
|
|
bool converged_MB = (mass_balance_residual_water < tol_mb)
|
|
&& (mass_balance_residual_oil < tol_mb)
|
|
&& (mass_balance_residual_gas < tol_mb);
|
|
|
|
bool converged_CNV = (CNVW < tol_cnv) && (CNVO < tol_cnv) && (CNVG < tol_cnv);
|
|
|
|
const double residualWellFlux = infinityNorm( residual_.well_flux_eq );
|
|
const double residualWell = infinityNorm( residual_.well_eq );
|
|
|
|
bool converged_Well = (residualWellFlux < 1./Opm::unit::day) && (residualWell < Opm::unit::barsa);
|
|
bool converged = converged_MB && converged_CNV && converged_Well;
|
|
|
|
if (iteration == 0) {
|
|
std::cout << "\nIter MB(OIL) MB(WATER) MB(GAS) CNVW CNVO CNVG WELL-FLOW WELL-CNTRL\n";
|
|
}
|
|
const std::streamsize oprec = std::cout.precision(3);
|
|
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
|
|
std::cout << std::setw(4) << iteration
|
|
<< std::setw(11) << mass_balance_residual_water
|
|
<< std::setw(11) << mass_balance_residual_oil
|
|
<< std::setw(11) << mass_balance_residual_gas
|
|
<< std::setw(11) << CNVW
|
|
<< std::setw(11) << CNVO
|
|
<< std::setw(11) << CNVG
|
|
<< std::setw(11) << residualWellFlux
|
|
<< std::setw(11) << residualWell
|
|
<< std::endl;
|
|
std::cout.precision(oprec);
|
|
std::cout.flags(oflags);
|
|
return converged;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, temp, cells);
|
|
case Oil: {
|
|
return fluid_.muOil(p, temp, rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, temp, rv, cond, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, temp, cells);
|
|
case Oil: {
|
|
return fluid_.bOil(p, temp, rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, temp, rv, cond, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::fluidDensity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
ADB b = fluidReciprocFVF(phase, p, temp, rs, rv, cond, cells);
|
|
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
if (phase == Oil && active_[Gas]) {
|
|
// It is correct to index into rhos with canonical phase indices.
|
|
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
|
|
}
|
|
if (phase == Gas && active_[Oil]) {
|
|
// It is correct to index into rhos with canonical phase indices.
|
|
rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b;
|
|
}
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
V
|
|
FullyImplicitBlackoilSolver<T>::fluidRsSat(const V& p,
|
|
const V& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsSat(p, satOil, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::fluidRsSat(const ADB& p,
|
|
const ADB& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsSat(p, satOil, cells);
|
|
}
|
|
|
|
template<class T>
|
|
V
|
|
FullyImplicitBlackoilSolver<T>::fluidRvSat(const V& p,
|
|
const V& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rvSat(p, satOil, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::fluidRvSat(const ADB& p,
|
|
const ADB& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rvSat(p, satOil, cells);
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::poroMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V pm(n);
|
|
V dpm(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
|
|
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dpm_diag = spdiag(dpm);
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]);
|
|
}
|
|
return ADB::function(pm, jacs);
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
ADB
|
|
FullyImplicitBlackoilSolver<T>::transMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V tm(n);
|
|
V dtm(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
tm[i] = rock_comp_props_->transMult(p.value()[i]);
|
|
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dtm_diag = spdiag(dtm);
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]);
|
|
}
|
|
return ADB::function(tm, jacs);
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::
|
|
classifyCondition(const SolutionState& state,
|
|
std::vector<PhasePresence>& cond ) const
|
|
{
|
|
const PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
if (active_[ Gas ]) {
|
|
// Oil/Gas or Water/Oil/Gas system
|
|
const int po = pu.phase_pos[ Oil ];
|
|
const int pg = pu.phase_pos[ Gas ];
|
|
|
|
const V& so = state.saturation[ po ].value();
|
|
const V& sg = state.saturation[ pg ].value();
|
|
|
|
cond.resize(sg.size());
|
|
|
|
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
|
|
if (so[c] > 0) { cond[c].setFreeOil (); }
|
|
if (sg[c] > 0) { cond[c].setFreeGas (); }
|
|
if (active_[ Water ]) { cond[c].setFreeWater(); }
|
|
}
|
|
}
|
|
else {
|
|
// Water/Oil system
|
|
assert (active_[ Water ]);
|
|
|
|
const int po = pu.phase_pos[ Oil ];
|
|
const V& so = state.saturation[ po ].value();
|
|
|
|
cond.resize(so.size());
|
|
|
|
for (V::Index c = 0, e = so.size(); c != e; ++c) {
|
|
cond[c].setFreeWater();
|
|
|
|
if (so[c] > 0) { cond[c].setFreeOil(); }
|
|
}
|
|
}
|
|
} */
|
|
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::classifyCondition(const BlackoilState& state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
|
|
const PhaseUsage& pu = fluid_.phaseUsage();
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
|
if (active_[ Gas ]) {
|
|
// Oil/Gas or Water/Oil/Gas system
|
|
const V so = s.col(pu.phase_pos[ Oil ]);
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
|
|
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
|
|
if (so[c] > 0) { phaseCondition_[c].setFreeOil (); }
|
|
if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); }
|
|
if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); }
|
|
}
|
|
}
|
|
else {
|
|
// Water/Oil system
|
|
assert (active_[ Water ]);
|
|
|
|
const V so = s.col(pu.phase_pos[ Oil ]);
|
|
|
|
|
|
for (V::Index c = 0, e = so.size(); c != e; ++c) {
|
|
phaseCondition_[c].setFreeWater();
|
|
|
|
if (so[c] > 0) { phaseCondition_[c].setFreeOil(); }
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::updatePrimalVariableFromState(const BlackoilState& state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
|
|
const PhaseUsage& pu = fluid_.phaseUsage();
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
|
|
|
// Water/Oil/Gas system
|
|
assert (active_[ Gas ]);
|
|
|
|
// reset the primary variables if RV and RS is not set Sg is used as primary variable.
|
|
primalVariable_.resize(nc);
|
|
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
|
|
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
const V so = s.col(pu.phase_pos[ Oil ]);
|
|
const V sw = s.col(pu.phase_pos[ Water ]);
|
|
|
|
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
auto watOnly = sw > (1 - epsilon);
|
|
auto hasOil = so > 0;
|
|
auto hasGas = sg > 0;
|
|
|
|
// For oil only cells Rs is used as primal variable. For cells almost full of water
|
|
// the default primal variable (Sg) is used.
|
|
if (has_disgas_) {
|
|
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
|
|
if ( !watOnly[c] && hasOil[c] && !hasGas[c] ) {primalVariable_[c] = PrimalVariables::RS; }
|
|
}
|
|
}
|
|
|
|
// For gas only cells Rv is used as primal variable. For cells almost full of water
|
|
// the default primal variable (Sg) is used.
|
|
if (has_vapoil_) {
|
|
for (V::Index c = 0, e = so.size(); c != e; ++c) {
|
|
if ( !watOnly[c] && hasGas[c] && !hasOil[c] ) {primalVariable_[c] = PrimalVariables::RV; }
|
|
}
|
|
}
|
|
updatePhaseCondFromPrimalVariable();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
|
template<class T>
|
|
void
|
|
FullyImplicitBlackoilSolver<T>::updatePhaseCondFromPrimalVariable()
|
|
{
|
|
if (! active_[Gas]) {
|
|
OPM_THROW(std::logic_error, "updatePhaseCondFromPrimarVariable() logic requires active gas phase.");
|
|
}
|
|
const int nc = primalVariable_.size();
|
|
for (int c = 0; c < nc; ++c) {
|
|
phaseCondition_[c] = PhasePresence(); // No free phases.
|
|
phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage.
|
|
switch (primalVariable_[c]) {
|
|
case PrimalVariables::Sg:
|
|
phaseCondition_[c].setFreeOil();
|
|
phaseCondition_[c].setFreeGas();
|
|
break;
|
|
case PrimalVariables::RS:
|
|
phaseCondition_[c].setFreeOil();
|
|
break;
|
|
case PrimalVariables::RV:
|
|
phaseCondition_[c].setFreeGas();
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << primalVariable_[c]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|