opm-simulators/doc/handbook/ModelDescriptions/2p2cboxmodel.tex
Andreas Lauser e660848dc9 last update of the model descriptions before the release
please fasten your seatbelts!
2012-07-12 21:25:02 +02:00

20 lines
2.9 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file has been autogenerated from the LaTeX part of the %
% doxygen documentation; DO NOT EDIT IT! Change the model's .hh %
% file instead!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\-This model implements two-\/phase two-\/component flow of two compressible and partially miscible fluids $\alpha \in \{ w, n \}$ composed of the two components $\kappa \in \{ w, a \}$. \-The standard multiphase \-Darcy approach is used as the equation for the conservation of momentum\-: \[ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right) \]
\-By inserting this into the equations for the conservation of the components, one gets one transport equation for each component \begin{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa S_\alpha )} {\partial t} - \sum_\alpha \text{div} \left\{ \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} (\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g}) \right\} \nonumber \\ \nonumber \\ &-& \sum_\alpha \text{div} \left\{{\bf D}_{\alpha, pm}^\kappa \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\} - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{w, a\} \, , \alpha \in \{w, g\} \end{eqnarray*}
\-This is discretized using a fully-\/coupled vertex centered finite volume (box) scheme as spatial and the implicit \-Euler method as temporal discretization.
\-By using constitutive relations for the capillary pressure $p_c = p_n - p_w$ and relative permeability $k_{r\alpha}$ and taking advantage of the fact that $S_w + S_n = 1$ and $X^\kappa_w + X^\kappa_n = 1$, the number of unknowns can be reduced to two. \-The used primary variables are, like in the two-\/phase model, either $p_w$ and $S_n$ or $p_n$ and $S_w$. \-The formulation which ought to be used can be specified by setting the {\ttfamily \-Formulation} property to either \-Two\-P\-Two\-C\-Indices\-::p\-Ws\-N or \-Two\-P\-Two\-C\-Indices\-::p\-Ns\-W. \-By default, the model uses $p_w$ and $S_n$. \-Moreover, the second primary variable depends on the phase state, since a primary variable switch is included. \-The phase state is stored for all nodes of the system. \-Following cases can be distinguished\-:
\begin{itemize}
\item \-Both phases are present\-: \-The saturation is used (either $S_n$ or $S_w$, dependent on the chosen {\ttfamily \-Formulation}), as long as $ 0 < S_\alpha < 1$.
\item \-Only wetting phase is present\-: \-The mass fraction of, e.\-g., air in the wetting phase $X^a_w$ is used, as long as the maximum mass fraction is not exceeded $(X^a_w<X^a_{w,max})$
\item \-Only non-\/wetting phase is present\-: \-The mass fraction of, e.\-g., water in the non-\/wetting phase, $X^w_n$, is used, as long as the maximum mass fraction is not exceeded $(X^w_n<X^w_{n,max})$
\end{itemize}