opm-simulators/opm/autodiff/AutoDiffMatrix.hpp
Robert Kloefkorn 3db63b0a22 add flow_ebos, an ebos based simulator
it uses ebos for linearization of the mass balance equations and the
current flow code from opm-simulators for all the rest. currently, the
results match the ones from plain `flow` for SPE1, SPE9 and Norne, but
performance is not optimal: on SPE9, converting from and to the legacy
data structures takes about a third of the time to do the actual mass
balance assembly. nevertheless `flow_ebos` is almost as fast as plain
`flow` for SPE9. (for Norne `flow_ebos` is about 15% slower, even
though the results match quite closely. the reason for this is that it
requires more iterations for some reason.)
2016-08-09 18:38:23 +02:00

759 lines
22 KiB
C++

/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AUTODIFFMATRIX_HEADER_INCLUDED
#define OPM_AUTODIFFMATRIX_HEADER_INCLUDED
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/common/ErrorMacros.hpp>
#include <opm/autodiff/fastSparseOperations.hpp>
#include <vector>
namespace Opm
{
/**
* AutoDiffMatrix is a wrapper class that optimizes matrix operations.
* Internally, an AutoDiffMatrix can be either Zero, Identity, Diagonal,
* or Sparse, and we utilize this to perform faster matrix operations.
*/
class AutoDiffMatrix
{
public:
typedef std::vector<double> DiagRep;
typedef Eigen::SparseMatrix<double> SparseRep;
/**
* Creates an empty zero matrix
*/
AutoDiffMatrix()
: type_(Zero),
rows_(0),
cols_(0),
diag_(),
sparse_()
{
}
/**
* Creates a zero matrix with num_rows x num_cols entries
*/
AutoDiffMatrix(const int num_rows, const int num_cols)
: type_(Zero),
rows_(num_rows),
cols_(num_cols),
diag_(),
sparse_()
{
}
/**
* Creates an identity matrix with num_rows_cols x num_rows_cols entries
*/
static AutoDiffMatrix createIdentity(const int num_rows_cols)
{
return AutoDiffMatrix(Identity, num_rows_cols, num_rows_cols);
}
/**
* Creates a diagonal matrix from an Eigen diagonal matrix
*/
explicit AutoDiffMatrix(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& d)
: type_(Diagonal),
rows_(d.rows()),
cols_(d.cols()),
diag_(d.diagonal().array().data(), d.diagonal().array().data() + d.rows()),
sparse_()
{
assert(rows_ == cols_);
}
/**
* Creates a sparse matrix from an Eigen sparse matrix
*/
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
: type_(Sparse),
rows_(s.rows()),
cols_(s.cols()),
diag_(),
sparse_(s)
{
}
AutoDiffMatrix(const AutoDiffMatrix& other) = default;
AutoDiffMatrix& operator=(const AutoDiffMatrix& other) = default;
AutoDiffMatrix(AutoDiffMatrix&& other)
: type_(Zero),
rows_(0),
cols_(0),
diag_(),
sparse_()
{
swap(other);
}
AutoDiffMatrix& operator=(AutoDiffMatrix&& other)
{
swap(other);
return *this;
}
void swap(AutoDiffMatrix& other)
{
std::swap(type_, other.type_);
std::swap(rows_, other.rows_);
std::swap(cols_, other.cols_);
diag_.swap(other.diag_);
sparse_.swap(other.sparse_);
}
/**
* Adds two AutoDiffMatrices. Internally, this function optimizes
* the addition operation based on the structure of the matrix, e.g.,
* adding two zero matrices will obviously yield a zero matrix, and
* so on.
*/
AutoDiffMatrix operator+(const AutoDiffMatrix& rhs) const
{
assert(rows_ == rhs.rows_);
assert(cols_ == rhs.cols_);
switch (type_) {
case Zero:
return rhs;
case Identity:
switch (rhs.type_) {
case Zero:
return *this;
case Identity:
return addII(*this, rhs);
case Diagonal:
return addDI(rhs, *this);
case Sparse:
return addSI(rhs, *this);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
case Diagonal:
switch (rhs.type_) {
case Zero:
return *this;
case Identity:
return addDI(*this, rhs);
case Diagonal:
return addDD(*this, rhs);
case Sparse:
return addSD(rhs, *this);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
case Sparse:
switch (rhs.type_) {
case Zero:
return *this;
case Identity:
return addSI(*this, rhs);
case Diagonal:
return addSD(*this, rhs);
case Sparse:
return addSS(*this, rhs);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
}
/**
* Multiplies two AutoDiffMatrices. Internally, this function optimizes
* the multiplication operation based on the structure of the matrix, e.g.,
* multiplying M with a zero matrix will obviously yield a zero matrix.
*/
AutoDiffMatrix operator*(const AutoDiffMatrix& rhs) const
{
assert(cols_ == rhs.rows_);
switch (type_) {
case Zero:
return AutoDiffMatrix(rows_, rhs.cols_);
case Identity:
return rhs;
case Diagonal:
switch (rhs.type_) {
case Zero:
return AutoDiffMatrix(rows_, rhs.cols_);
case Identity:
return *this;
case Diagonal:
return mulDD(*this, rhs);
case Sparse:
return mulDS(*this, rhs);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
case Sparse:
switch (rhs.type_) {
case Zero:
return AutoDiffMatrix(rows_, rhs.cols_);
case Identity:
return *this;
case Diagonal:
return mulSD(*this, rhs);
case Sparse:
return mulSS(*this, rhs);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
}
}
AutoDiffMatrix& operator+=(const AutoDiffMatrix& rhs)
{
if( type_ == Sparse && rhs.type_ == Sparse )
{
fastSparseAdd( sparse_, rhs.sparse_ );
}
else {
*this = *this + rhs;
}
return *this;
}
AutoDiffMatrix& operator-=(const AutoDiffMatrix& rhs)
{
if( type_ == Sparse && rhs.type_ == Sparse )
{
fastSparseSubstract( sparse_, rhs.sparse_ );
}
else {
*this = *this + (rhs * -1.0);
}
return *this;
}
/**
* Multiplies an AutoDiffMatrix with a scalar. Optimizes internally
* by exploiting that e.g., an identity matrix multiplied by a scalar x
* yields a diagonal matrix with x the diagonal.
*/
AutoDiffMatrix operator*(const double rhs) const
{
switch (type_) {
case Zero:
return *this;
case Identity:
{
AutoDiffMatrix retval(*this);
retval.type_ = Diagonal;
retval.diag_.assign(rows_, rhs);
return retval;
}
case Diagonal:
{
AutoDiffMatrix retval(*this);
for (double& elem : retval.diag_) {
elem *= rhs;
}
return retval;
}
case Sparse:
{
AutoDiffMatrix retval(*this);
retval.sparse_ *= rhs;
return retval;
}
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
}
/**
* Divides an AutoDiffMatrix by a scalar. Optimizes internally
* by exploiting that e.g., an identity matrix divided by a scalar x
* yields a diagonal matrix with 1/x on the diagonal.
*/
AutoDiffMatrix operator/(const double rhs) const
{
switch (type_) {
case Zero:
return *this;
case Identity:
{
AutoDiffMatrix retval(*this);
retval.type_ = Diagonal;
retval.diag_.assign(rows_, 1.0/rhs);
return retval;
}
case Diagonal:
{
AutoDiffMatrix retval(*this);
for (double& elem : retval.diag_) {
elem /= rhs;
}
return retval;
}
case Sparse:
{
AutoDiffMatrix retval(*this);
retval.sparse_ /= rhs;
return retval;
}
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
}
/**
* Multiplies an AutoDiffMatrix with a vector. Optimizes internally
* by exploiting that e.g., an identity matrix multiplied by a vector
* yields the vector itself.
*/
Eigen::VectorXd operator*(const Eigen::VectorXd& rhs) const
{
assert(cols_ == rhs.size());
switch (type_) {
case Zero:
return Eigen::VectorXd::Zero(rows_);
case Identity:
return rhs;
case Diagonal:
{
const Eigen::VectorXd d = Eigen::Map<const Eigen::VectorXd>(diag_.data(), rows_);
return d.cwiseProduct(rhs);
}
case Sparse:
return sparse_ * rhs;
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
}
// Add identity to identity
static AutoDiffMatrix addII(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Identity);
assert(rhs.type_ == Identity);
AutoDiffMatrix retval;
retval.type_ = Diagonal;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.diag_.assign(lhs.rows_, 2.0);
return retval;
}
// Add diagonal to identity
static AutoDiffMatrix addDI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
static_cast<void>(rhs); // Silence release-mode warning.
assert(lhs.type_ == Diagonal);
assert(rhs.type_ == Identity);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
retval.diag_[r] += 1.0;
}
return retval;
}
// Add diagonal to diagonal
static AutoDiffMatrix addDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Diagonal);
assert(rhs.type_ == Diagonal);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
retval.diag_[r] += rhs.diag_[r];
}
return retval;
}
// Add sparse to identity
static AutoDiffMatrix addSI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
static_cast<void>(rhs); // Silence release-mode warning.
assert(lhs.type_ == Sparse);
assert(rhs.type_ == Identity);
AutoDiffMatrix retval = lhs;
retval.sparse_ += spdiag(Eigen::VectorXd::Ones(lhs.rows_));;
return retval;
}
// Add sparse to diagonal
static AutoDiffMatrix addSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Sparse);
assert(rhs.type_ == Diagonal);
AutoDiffMatrix retval = lhs;
retval.sparse_ += spdiag(rhs.diag_);
return retval;
}
// Add sparse to sparse
static AutoDiffMatrix addSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Sparse);
assert(rhs.type_ == Sparse);
AutoDiffMatrix retval = lhs;
retval.sparse_ += rhs.sparse_;
return retval;
}
// Multiply diagonal with diagonal
static AutoDiffMatrix mulDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Diagonal);
assert(rhs.type_ == Diagonal);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
retval.diag_[r] *= rhs.diag_[r];
}
return retval;
}
// Multiply diagonal with sparse
static AutoDiffMatrix mulDS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Diagonal);
assert(rhs.type_ == Sparse);
AutoDiffMatrix retval;
retval.type_ = Sparse;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastDiagSparseProduct(lhs.diag_, rhs.sparse_, retval.sparse_);
return retval;
}
// Multiply sparse with diagonal
static AutoDiffMatrix mulSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Sparse);
assert(rhs.type_ == Diagonal);
AutoDiffMatrix retval;
retval.type_ = Sparse;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastSparseDiagProduct(lhs.sparse_, rhs.diag_, retval.sparse_);
return retval;
}
// Multiply sparse with sparse
static AutoDiffMatrix mulSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
{
assert(lhs.type_ == Sparse);
assert(rhs.type_ == Sparse);
AutoDiffMatrix retval;
retval.type_ = Sparse;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
fastSparseProduct(lhs.sparse_, rhs.sparse_, retval.sparse_);
return retval;
}
/**
* Converts the AutoDiffMatrix to an Eigen SparseMatrix.This might be
* an expensive operation to perform for e.g., an identity matrix or a
* diagonal matrix.
*/
template<class Scalar, int Options, class Index>
void toSparse(Eigen::SparseMatrix<Scalar, Options, Index>& s) const
{
switch (type_) {
case Zero:
s = Eigen::SparseMatrix<Scalar, Options, Index>(rows_, cols_);
return;
case Identity:
s = spdiag(Eigen::VectorXd::Ones(rows_));
return;
case Diagonal:
s = spdiag(diag_);
return;
case Sparse:
s = sparse_;
return;
}
}
/**
* Converts the AutoDiffMatrix to an Eigen SparseMatrix.This might be
* an expensive operation to perform for e.g., an identity matrix or a
* diagonal matrix.
*/
template<class Scalar, int Options, class Index>
void assign(const Eigen::SparseMatrix<Scalar, Options, Index>& s)
{
(*this) = AutoDiffMatrix( s.rows(), s.cols() );
type_ = Sparse;
sparse_ = s;
}
template<class Scalar, int Options, class Index>
void assign(const Eigen::SparseMatrix<Scalar, Options, Index>&& s)
{
(*this) = AutoDiffMatrix( s.rows(), s.cols() );
type_ = Sparse;
sparse_ = std::move(s);
}
/**
* Returns number of rows in the matrix
*/
int rows() const
{
return rows_;
}
/**
* Returns number of columns in the matrix
*/
int cols() const
{
return cols_;
}
/**
* Returns number of non-zero elements in the matrix. Optimizes internally
* by exploiting that e.g., an n*n identity matrix has n non-zeros.
* Note that an n*n diagonal matrix is defined to have n non-zeros, even though
* several diagonal elements might be 0.0.
*/
int nonZeros() const
{
switch (type_) {
case Zero:
return 0;
case Identity:
return rows_;
case Diagonal:
return rows_;
case Sparse:
return sparse_.nonZeros();
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
}
/**
* Returns element (row, col) in the matrix
*/
double coeff(const int row, const int col) const
{
switch (type_) {
case Zero:
return 0.0;
case Identity:
return (row == col) ? 1.0 : 0.0;
case Diagonal:
return (row == col) ? diag_[row] : 0.0;
case Sparse:
return sparse_.coeff(row, col);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
}
/**
* Returns the sparse representation of this matrix. Note that this might
* be an expensive operation to perform if the internal structure is not
* sparse.
*/
const SparseRep& getSparse() const {
if (type_ != Sparse) {
/**
* If we are not a sparse matrix, our internal variable sparse_
* is undefined, and hence changing it so that it happens to be
* a sparse representation of our true data does not change our
* true data, and hence justifies that we do not really violate
* the const qualifier.
*/
SparseRep& mutable_sparse = const_cast<SparseRep&>(sparse_);
toSparse(mutable_sparse);
}
return sparse_;
}
private:
enum AudoDiffMatrixType { Zero, Identity, Diagonal, Sparse };
AudoDiffMatrixType type_; //< Type of matrix
int rows_; //< Number of rows
int cols_; //< Number of columns
DiagRep diag_; //< Diagonal representation (only if type==Diagonal)
SparseRep sparse_; //< Sparse representation (only if type==Sparse)
/**
* Constructor which sets all members
*/
AutoDiffMatrix(AudoDiffMatrixType type, int rows_arg, int cols_arg,
DiagRep diag=DiagRep(), SparseRep sparse=SparseRep())
: type_(type),
rows_(rows_arg),
cols_(cols_arg),
diag_(diag),
sparse_(sparse)
{
}
/**
* Creates a sparse diagonal matrix from d.
* Typical use is to convert a standard vector to an
* Eigen sparse matrix.
*/
template <class V>
static inline
SparseRep
spdiag(const V& d)
{
const int n = d.size();
SparseRep mat(n, n);
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
for (SparseRep::Index i = 0; i < n; ++i) {
if (d[i] != 0.0) {
mat.insert(i, i) = d[i];
}
}
return mat;
}
};
/**
* Utility function to lessen code changes required elsewhere.
*/
inline void fastSparseProduct(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
{
res = lhs * rhs;
}
/**
* Utility function to lessen code changes required elsewhere.
*/
inline void fastSparseProduct(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
{
res = AutoDiffMatrix(lhs) * rhs;
}
/**
* Multiplies an Eigen sparse matrix with an AutoDiffMatrix.
*/
inline AutoDiffMatrix operator*(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs)
{
AutoDiffMatrix retval;
fastSparseProduct(lhs, rhs, retval);
return retval;
}
} // namespace Opm
#endif // OPM_AUTODIFFMATRIX_HEADER_INCLUDED