opm-simulators/opm/autodiff/BlackoilDetails.hpp
2016-08-26 11:54:59 +02:00

321 lines
13 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILDETAILS_HEADER_INCLUDED
#define OPM_BLACKOILDETAILS_HEADER_INCLUDED
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
namespace Opm {
namespace detail {
inline
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
inline
double getGravity(const double* g, const int dim) {
double grav = 0.0;
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
grav = g[dim - 1];
}
return grav;
}
/// \brief Compute the L-infinity norm of a vector
/// \warn This function is not suitable to compute on the well equations.
/// \param a The container to compute the infinity norm on.
/// It has to have one entry for each cell.
/// \param info In a parallel this holds the information about the data distribution.
template <class ADB>
inline
double infinityNorm( const ADB& a, const boost::any& pinfo = boost::any() )
{
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
double result=0;
real_info.computeReduction(a.value(), Reduction::makeLInfinityNormFunctor<double>(), result);
return result;
}
else
#endif
{
if( a.value().size() > 0 ) {
return a.value().matrix().template lpNorm<Eigen::Infinity> ();
}
else { // this situation can occur when no wells are present
return 0.0;
}
}
}
/// \brief Compute the Euclidian norm of a vector
/// \warning In the case that num_components is greater than 1
/// an interleaved ordering is assumed. E.g. for each cell
/// all phases of that cell are stored consecutively. First
/// the ones for cell 0, then the ones for cell 1, ... .
/// \param it begin iterator for the given vector
/// \param end end iterator for the given vector
/// \param num_components number of components (i.e. phases) in the vector
/// \param pinfo In a parallel this holds the information about the data distribution.
template <class Iterator>
inline
double euclidianNormSquared( Iterator it, const Iterator end, int num_components, const boost::any& pinfo = boost::any() )
{
static_cast<void>(num_components); // Suppress warning in the serial case.
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
typedef typename Iterator::value_type Scalar;
Scalar product = 0.0;
int size_per_component = (end - it);
size_per_component /= num_components; // two lines to supresse unused warning.
assert((end - it) == num_components * size_per_component);
if( num_components == 1 )
{
auto component_container =
boost::make_iterator_range(it, end);
info.computeReduction(component_container,
Opm::Reduction::makeInnerProductFunctor<double>(),
product);
}
else
{
auto& maskContainer = info.getOwnerMask();
auto mask = maskContainer.begin();
assert(static_cast<int>(maskContainer.size()) == size_per_component);
for(int cell = 0; cell < size_per_component; ++cell, ++mask)
{
Scalar cell_product = (*it) * (*it);
++it;
for(int component=1; component < num_components;
++component, ++it)
{
cell_product += (*it) * (*it);
}
product += cell_product * (*mask);
}
}
return info.communicator().sum(product);
}
else
#endif
{
double product = 0.0 ;
for( ; it != end; ++it ) {
product += ( *it * *it );
}
return product;
}
}
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[out] maxNormWell The maximum of the well flux equations for each phase.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
inline
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
std::vector<double>& R_sum,
std::vector<double>& maxCoeff,
std::vector<double>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int np,
const std::vector<double> pv,
std::vector<double> residual_well)
{
const int nw = residual_well.size() / np;
assert(nw * np == int(residual_well.size()));
// Do the global reductions
#if 0
HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector<int> v(nc, 1);
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
auto nc_and_pv_containers = std::make_tuple(v, pv);
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx = 0; idx < np; ++idx )
{
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalMaxFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
}
}
}
info.communicator().max(maxNormWell.data(), np);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
B_avg.resize(np);
maxCoeff.resize(np);
R_sum.resize(np);
maxNormWell.resize(np);
for ( int idx = 0; idx < np; ++idx )
{
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
}
}
}
// Compute total pore volume
return std::accumulate(pv.begin(), pv.end(), 0.0);
}
}
/// \brief Compute the L-infinity norm of a vector representing a well equation.
/// \param a The container to compute the infinity norm on.
/// \param info In a parallel this holds the information about the data distribution.
template <class ADB>
inline
double infinityNormWell( const ADB& a, const boost::any& pinfo )
{
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
double result=0;
if( a.value().size() > 0 ) {
result = a.value().matrix().template lpNorm<Eigen::Infinity> ();
}
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
result = real_info.communicator().max(result);
}
#endif
return result;
}
} // namespace detail
} // namespace Opm
#endif // OPM_BLACKOILDETAILS_HEADER_INCLUDED