opm-simulators/opm/autodiff/FlowMain.hpp
2016-08-11 09:59:07 +02:00

875 lines
34 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLOWMAIN_HEADER_INCLUDED
#define OPM_FLOWMAIN_HEADER_INCLUDED
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <dune/common/version.hh>
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
#include <dune/common/parallel/mpihelper.hh>
#else
#include <dune/common/mpihelper.hh>
#endif
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/createGlobalCellArray.hpp>
#include <opm/autodiff/GridInit.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/simulators/thresholdPressures.hpp> // Note: the GridHelpers must be included before this (to make overloads available). \TODO: Fix.
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/RedistributeDataHandles.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/autodiff/MissingFeatures.hpp>
#include <opm/core/utility/share_obj.hpp>
#include <opm/core/utility/initHydroCarbonState.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/OpmLog/EclipsePRTLog.hpp>
#include <opm/common/OpmLog/LogUtil.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/checkDeck.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <memory>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <numeric>
#include <cstdlib>
#include <stdexcept>
namespace Opm
{
namespace detail
{
boost::filesystem::path simulationCaseName( const std::string& casename );
int64_t convertMessageType(const Message::type& mtype);
}
/// This class encapsulates the setup and running of
/// a simulator based on an input deck.
template <class Implementation, class Grid, class Simulator>
class FlowMainBase
{
public:
/// This is the main function of Flow.
/// It runs a complete simulation, with the given grid and
/// simulator classes, based on user command-line input. The
/// content of this function used to be in the main() function of
/// flow.cpp.
int execute(int argc, char** argv)
try {
// Setup.
asImpl().setupParallelism(argc, argv);
asImpl().printStartupMessage();
const bool ok = asImpl().setupParameters(argc, argv);
if (!ok) {
return EXIT_FAILURE;
}
asImpl().setupOutput();
asImpl().setupLogging();
asImpl().readDeckInput();
asImpl().setupGridAndProps();
asImpl().extractMessages();
asImpl().runDiagnostics();
asImpl().setupState();
asImpl().distributeData();
asImpl().setupOutputWriter();
asImpl().setupLinearSolver();
asImpl().createSimulator();
// Run.
return asImpl().runSimulator();
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
return EXIT_FAILURE;
}
protected:
// ------------ Types ------------
typedef BlackoilPropsAdFromDeck FluidProps;
typedef FluidProps::MaterialLawManager MaterialLawManager;
typedef typename Simulator::ReservoirState ReservoirState;
// ------------ Data members ------------
// The comments indicate in which method the
// members first occur.
// setupParallelism()
bool output_cout_ = false;
bool must_distribute_ = false;
// setupParameters()
parameter::ParameterGroup param_;
// setupOutput()
bool output_to_files_ = false;
std::string output_dir_ = std::string(".");
// readDeckInput()
std::shared_ptr<const Deck> deck_;
std::shared_ptr<EclipseState> eclipse_state_;
// setupGridAndProps()
std::unique_ptr<GridInit<Grid>> grid_init_;
std::shared_ptr<MaterialLawManager> material_law_manager_;
std::unique_ptr<FluidProps> fluidprops_;
std::unique_ptr<RockCompressibility> rock_comp_;
std::array<double, 3> gravity_;
bool use_local_perm_ = true;
std::unique_ptr<DerivedGeology> geoprops_;
// setupState()
std::unique_ptr<ReservoirState> state_;
std::vector<double> threshold_pressures_;
// distributeData()
boost::any parallel_information_;
// setupOutputWriter()
std::unique_ptr<BlackoilOutputWriter> output_writer_;
// setupLinearSolver
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver_;
// createSimulator()
std::unique_ptr<Simulator> simulator_;
// create log file
std::string logFile_;
// ------------ Methods ------------
// Set up MPI and OpenMP.
// Writes to:
// output_cout_
// must_distribute_
void setupParallelism(int argc, char** argv)
{
// MPI setup.
// Must ensure an instance of the helper is created to initialise MPI.
// For a build without MPI the Dune::FakeMPIHelper is used, so rank will
// be 0 and size 1.
const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv);
const int mpi_rank = mpi_helper.rank();
const int mpi_size = mpi_helper.size();
output_cout_ = ( mpi_rank == 0 );
must_distribute_ = ( mpi_size > 1 );
#ifdef _OPENMP
// OpenMP setup.
if (!getenv("OMP_NUM_THREADS")) {
// Default to at most 4 threads, regardless of
// number of cores (unless ENV(OMP_NUM_THREADS) is defined)
int num_cores = omp_get_num_procs();
int num_threads = std::min(4, num_cores);
omp_set_num_threads(num_threads);
}
#pragma omp parallel
if (omp_get_thread_num() == 0) {
// omp_get_num_threads() only works as expected within a parallel region.
const int num_omp_threads = omp_get_num_threads();
if (mpi_size == 1) {
std::cout << "OpenMP using " << num_omp_threads << " threads." << std::endl;
} else {
std::cout << "OpenMP using " << num_omp_threads << " threads on MPI rank " << mpi_rank << "." << std::endl;
}
}
#endif
}
/// checks cartesian adjacency of global indices g1 and g2
bool cartesianAdjacent(const Grid& grid, int g1, int g2) {
// we need cartDims from UgGridHelpers
using namespace UgGridHelpers;
int diff = std::abs(g1 - g2);
const int * dimens = cartDims(grid);
if (diff == 1)
return true;
if (diff == dimens[0])
return true;
if (diff == dimens[0] * dimens[1])
return true;
return false;
}
// Print startup message if on output rank.
void printStartupMessage()
{
if (output_cout_) {
const std::string version = moduleVersionName();
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "* This is Flow (version " << version << ")"
<< std::string(26 - version.size(), ' ') << "*\n";
std::cout << "* *\n";
std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n";
std::cout << "* and is part of OPM. For more information see: *\n";
std::cout << "* http://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
}
}
// Read parameters, see if a deck was specified on the command line, and if
// it was, insert it into parameters.
// Writes to:
// param_
// Returns true if ok, false if not.
bool setupParameters(int argc, char** argv)
{
param_ = parameter::ParameterGroup(argc, argv, false, output_cout_);
// See if a deck was specified on the command line.
if (!param_.unhandledArguments().empty()) {
if (param_.unhandledArguments().size() != 1) {
std::cerr << "You can only specify a single input deck on the command line.\n";
return false;
} else {
const auto casename = detail::simulationCaseName( param_.unhandledArguments()[ 0 ] );
param_.insertParameter("deck_filename", casename.string() );
}
}
// We must have an input deck. Grid and props will be read from that.
if (!param_.has("deck_filename")) {
std::cerr << "This program must be run with an input deck.\n"
"Specify the deck filename either\n"
" a) as a command line argument by itself\n"
" b) as a command line parameter with the syntax deck_filename=<path to your deck>, or\n"
" c) as a parameter in a parameter file (.param or .xml) passed to the program.\n";
return false;
}
return true;
}
// Set output_to_files_ and set/create output dir. Write parameter file.
// Writes to:
// output_to_files_
// output_dir_
// Throws std::runtime_error if failed to create (if requested) output dir.
void setupOutput()
{
// Write parameters used for later reference. (only if rank is zero)
output_to_files_ = output_cout_ && param_.getDefault("output", true);
if (output_to_files_) {
// Create output directory if needed.
output_dir_ =
param_.getDefault("output_dir", std::string("."));
boost::filesystem::path fpath(output_dir_);
if (!is_directory(fpath)) {
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
}
// Write simulation parameters.
param_.writeParam(output_dir_ + "/simulation.param");
}
}
// Setup OpmLog backend with output_dir.
void setupLogging()
{
std::string deck_filename = param_.get<std::string>("deck_filename");
// create logFile
using boost::filesystem::path;
path fpath(deck_filename);
std::string baseName;
std::string debugFile;
if (boost::to_upper_copy(path(fpath.extension()).string()) == ".DATA") {
baseName = path(fpath.stem()).string();
} else {
baseName = path(fpath.filename()).string();
}
if (param_.has("output_dir")) {
logFile_ = output_dir_ + "/" + baseName + ".PRT";
debugFile = output_dir_ + "/." + baseName + ".DEBUG";
} else {
logFile_ = baseName + ".PRT";
debugFile = "." + baseName + ".DEBUG";
}
std::shared_ptr<EclipsePRTLog> prtLog = std::make_shared<EclipsePRTLog>(logFile_ , Log::NoDebugMessageTypes);
std::shared_ptr<StreamLog> streamLog = std::make_shared<StreamLog>(std::cout, Log::StdoutMessageTypes);
OpmLog::addBackend( "ECLIPSEPRTLOG" , prtLog );
OpmLog::addBackend( "STREAMLOG", streamLog);
std::shared_ptr<StreamLog> debugLog = std::make_shared<EclipsePRTLog>(debugFile, Log::DefaultMessageTypes);
OpmLog::addBackend( "DEBUGLOG" , debugLog);
prtLog->setMessageFormatter(std::make_shared<SimpleMessageFormatter>(false));
streamLog->setMessageLimiter(std::make_shared<MessageLimiter>(10));
streamLog->setMessageFormatter(std::make_shared<SimpleMessageFormatter>(true));
// Read parameters.
OpmLog::debug("\n--------------- Reading parameters ---------------\n");
}
// Parser the input and creates the Deck and EclipseState objects.
// Writes to:
// deck_
// eclipse_state_
// May throw if errors are encountered, here configured to be somewhat tolerant.
void readDeckInput()
{
std::string deck_filename = param_.get<std::string>("deck_filename");
// Create Parser
ParserPtr parser(new Parser());
// Create Deck and EclipseState.
try {
ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }});
deck_ = parser->parseFile(deck_filename, parseContext);
checkDeck(deck_, parser);
MissingFeatures::checkKeywords(*deck_);
eclipse_state_.reset(new EclipseState(*deck_, parseContext));
auto ioConfig = eclipse_state_->getIOConfig();
ioConfig->setOutputDir(output_dir_);
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid EclipseState object. See logfile: " << logFile_ << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
throw;
}
// Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step)
if (param_.has("output_interval")) {
const int output_interval = param_.get<int>("output_interval");
eclipse_state_->getRestartConfig().overrideRestartWriteInterval( size_t( output_interval ) );
}
// Possible to force initialization only behavior (NOSIM).
if (param_.has("nosim")) {
const bool nosim = param_.get<bool>("nosim");
IOConfigPtr ioConfig = eclipse_state_->getIOConfig();
ioConfig->overrideNOSIM( nosim );
}
}
// Create grid and property objects.
// Writes to:
// grid_init_
// material_law_manager_
// fluidprops_
// rock_comp_
// gravity_
// use_local_perm_
// geoprops_
void setupGridAndProps()
{
// Create grid.
const std::vector<double>& porv =
eclipse_state_->get3DProperties().getDoubleGridProperty("PORV").getData();
grid_init_.reset(new GridInit<Grid>(eclipse_state_, porv));
const Grid& grid = grid_init_->grid();
// Create material law manager.
std::vector<int> compressedToCartesianIdx;
Opm::createGlobalCellArray(grid, compressedToCartesianIdx);
material_law_manager_.reset(new MaterialLawManager());
material_law_manager_->initFromDeck(deck_, eclipse_state_, compressedToCartesianIdx);
// Rock and fluid properties.
fluidprops_.reset(new BlackoilPropsAdFromDeck(deck_, eclipse_state_, material_law_manager_, grid));
// Rock compressibility.
rock_comp_.reset(new RockCompressibility(deck_, eclipse_state_));
// Gravity.
assert(UgGridHelpers::dimensions(grid) == 3);
gravity_.fill(0.0);
gravity_[2] = deck_->hasKeyword("NOGRAV")
? param_.getDefault("gravity", 0.0)
: param_.getDefault("gravity", unit::gravity);
// Geological properties
use_local_perm_ = param_.getDefault("use_local_perm", use_local_perm_);
geoprops_.reset(new DerivedGeology(grid, *fluidprops_, eclipse_state_, use_local_perm_, gravity_.data()));
}
// Initialise the reservoir state. Updated fluid props for SWATINIT.
// Writes to:
// state_
// threshold_pressures_
// fluidprops_ (if SWATINIT is used)
void setupState()
{
const PhaseUsage pu = Opm::phaseUsageFromDeck(deck_);
const Grid& grid = grid_init_->grid();
// Need old-style fluid object for init purposes (only).
BlackoilPropertiesFromDeck props( deck_, eclipse_state_, material_law_manager_,
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
param_);
// Init state variables (saturation and pressure).
if (param_.has("init_saturation")) {
state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases() ));
initStateBasic(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::numFaces(grid),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid),
props, param_, gravity_[2], *state_);
initBlackoilSurfvol(Opm::UgGridHelpers::numCells(grid), props, *state_);
enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
const int numPhases = props.numPhases();
const int numCells = Opm::UgGridHelpers::numCells(grid);
// Uglyness 1: The state is a templated type, here we however make explicit use BlackoilState.
auto& gor = state_->getCellData( BlackoilState::GASOILRATIO );
const auto& surface_vol = state_->getCellData( BlackoilState::SURFACEVOL );
for (int c = 0; c < numCells; ++c) {
// Uglyness 2: Here we explicitly use the layout of the saturation in the surface_vol field.
gor[c] = surface_vol[ c * numPhases + pu.phase_pos[Gas]] / surface_vol[ c * numPhases + pu.phase_pos[Oil]];
}
}
} else if (deck_->hasKeyword("EQUIL")) {
// Which state class are we really using - what a f... mess?
state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases()));
initStateEquil(grid, props, deck_, eclipse_state_, gravity_[2], *state_);
//state_.faceflux().resize(Opm::UgGridHelpers::numFaces(grid), 0.0);
} else {
state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases()));
initBlackoilStateFromDeck(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::numFaces(grid),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid),
props, deck_, gravity_[2], *state_);
}
// Threshold pressures.
std::map<std::pair<int, int>, double> maxDp;
computeMaxDp(maxDp, deck_, eclipse_state_, grid_init_->grid(), *state_, props, gravity_[2]);
threshold_pressures_ = thresholdPressures(deck_, eclipse_state_, grid, maxDp);
std::vector<double> threshold_pressures_nnc = thresholdPressuresNNC(eclipse_state_, geoprops_->nnc(), maxDp);
threshold_pressures_.insert(threshold_pressures_.end(), threshold_pressures_nnc.begin(), threshold_pressures_nnc.end());
// The capillary pressure is scaled in fluidprops_ to match the scaled capillary pressure in props.
if (deck_->hasKeyword("SWATINIT")) {
const int numCells = Opm::UgGridHelpers::numCells(grid);
std::vector<int> cells(numCells);
for (int c = 0; c < numCells; ++c) { cells[c] = c; }
std::vector<double> pc = state_->saturation();
props.capPress(numCells, state_->saturation().data(), cells.data(), pc.data(), nullptr);
fluidprops_->setSwatInitScaling(state_->saturation(), pc);
}
initHydroCarbonState(*state_, pu, Opm::UgGridHelpers::numCells(grid), deck_->hasKeyword("DISGAS"), deck_->hasKeyword("VAPOIL"));
}
// Distribute the grid, properties and state.
// Writes to:
// grid_init_->grid()
// state_
// fluidprops_
// geoprops_
// material_law_manager_
// parallel_information_
void distributeData()
{
// At this point all properties and state variables are correctly initialized
// If there are more than one processors involved, we now repartition the grid
// and initilialize new properties and states for it.
if (must_distribute_) {
distributeGridAndData(grid_init_->grid(), deck_, eclipse_state_,
*state_, *fluidprops_, *geoprops_,
material_law_manager_, threshold_pressures_,
parallel_information_, use_local_perm_);
}
}
// Extract messages from parser.
// Writes to:
// OpmLog singleton.
void extractMessages()
{
auto extractMessage = [](const Message& msg) {
auto log_type = detail::convertMessageType(msg.mtype);
const auto& location = msg.location;
if (location) {
OpmLog::addMessage(log_type, Log::fileMessage(location.filename, location.lineno, msg.message));
} else {
OpmLog::addMessage(log_type, msg.message);
}
};
// Extract messages from Deck.
for(const auto& msg : deck_->getMessageContainer()) {
extractMessage(msg);
}
// Extract messages from EclipseState.
for (const auto& msg : eclipse_state_->getMessageContainer()) {
extractMessage(msg);
}
}
// Run diagnostics.
// Writes to:
// OpmLog singleton.
void runDiagnostics()
{
// Run relperm diagnostics
RelpermDiagnostics diagnostic;
diagnostic.diagnosis(eclipse_state_, deck_, grid_init_->grid());
}
// Setup output writer.
// Writes to:
// output_writer_
void setupOutputWriter()
{
// create output writer after grid is distributed, otherwise the parallel output
// won't work correctly since we need to create a mapping from the distributed to
// the global view
output_writer_.reset(new BlackoilOutputWriter(grid_init_->grid(),
param_,
eclipse_state_,
geoprops_->nonCartesianConnections(),
Opm::phaseUsageFromDeck(deck_),
fluidprops_->permeability()));
}
// Setup linear solver.
// Writes to:
// fis_solver_
void setupLinearSolver()
{
const std::string cprSolver = "cpr";
const std::string interleavedSolver = "interleaved";
const std::string directSolver = "direct";
std::string flowDefaultSolver = interleavedSolver;
if (!param_.has("solver_approach")) {
if (eclipse_state_->getSimulationConfig().useCPR()) {
flowDefaultSolver = cprSolver;
}
}
const std::string solver_approach = param_.getDefault("solver_approach", flowDefaultSolver);
if (solver_approach == cprSolver) {
fis_solver_.reset(new NewtonIterationBlackoilCPR(param_, parallel_information_));
} else if (solver_approach == interleavedSolver) {
fis_solver_.reset(new NewtonIterationBlackoilInterleaved(param_, parallel_information_));
} else if (solver_approach == directSolver) {
fis_solver_.reset(new NewtonIterationBlackoilSimple(param_, parallel_information_));
} else {
OPM_THROW( std::runtime_error , "Internal error - solver approach " << solver_approach << " not recognized.");
}
}
// Run the simulator.
// Returns EXIT_SUCCESS if it does not throw.
int runSimulator()
{
Opm::ScheduleConstPtr schedule = eclipse_state_->getSchedule();
Opm::TimeMapConstPtr timeMap(schedule->getTimeMap());
std::shared_ptr<IOConfig> ioConfig = eclipse_state_->getIOConfig();
SimulatorTimer simtimer;
// initialize variables
const auto& initConfig = eclipse_state_->getInitConfig();
simtimer.init(timeMap, (size_t)initConfig.getRestartStep());
if (!ioConfig->initOnly()) {
if (output_cout_) {
std::string msg;
msg = "\n\n================ Starting main simulation loop ===============\n";
OpmLog::info(msg);
}
SimulatorReport fullReport = simulator_->run(simtimer, *state_);
if (output_cout_) {
std::ostringstream ss;
ss << "\n\n================ End of simulation ===============\n\n";
fullReport.reportFullyImplicit(ss);
OpmLog::info(ss.str());
if (param_.anyUnused()) {
// This allows a user to catch typos and misunderstandings in the
// use of simulator parameters.
std::cout << "-------------------- Unused parameters: --------------------\n";
param_.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
if (output_to_files_) {
std::string filename = output_dir_ + "/walltime.txt";
std::fstream tot_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
fullReport.reportParam(tot_os);
}
} else {
output_writer_->writeInit(geoprops_->simProps(grid_init_->grid()) , geoprops_->nonCartesianConnections( ));
if (output_cout_) {
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
}
return EXIT_SUCCESS;
}
// Access the most-derived class used for
// static polymorphism (CRTP).
Implementation& asImpl()
{
return static_cast<Implementation&>(*this);
}
}; // class FlowMainBase
// The FlowMain class is the basic black-oil simulator case.
template <class Grid, class Simulator>
class FlowMain : public FlowMainBase<FlowMain<Grid, Simulator>, Grid, Simulator>
{
protected:
using Base = FlowMainBase<FlowMain<Grid, Simulator>, Grid, Simulator>;
friend Base;
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// Create the simulator instance.
Base::simulator_.reset(new Simulator(Base::param_,
Base::grid_init_->grid(),
*Base::geoprops_,
*Base::fluidprops_,
Base::rock_comp_->isActive() ? Base::rock_comp_.get() : nullptr,
*Base::fis_solver_,
Base::gravity_.data(),
Base::deck_->hasKeyword("DISGAS"),
Base::deck_->hasKeyword("VAPOIL"),
Base::eclipse_state_,
*Base::output_writer_,
Base::threshold_pressures_));
}
};
namespace detail
{
boost::filesystem::path simulationCaseName( const std::string& casename ) {
namespace fs = boost::filesystem;
const auto exists = []( const fs::path& f ) -> bool {
if( !fs::exists( f ) ) return false;
if( fs::is_regular_file( f ) ) return true;
return fs::is_symlink( f )
&& fs::is_regular_file( fs::read_symlink( f ) );
};
auto simcase = fs::path( casename );
if( exists( simcase ) ) {
return simcase;
}
for( const auto& ext : { std::string("data"), std::string("DATA") } ) {
if( exists( simcase.replace_extension( ext ) ) ) {
return simcase;
}
}
throw std::invalid_argument( "Cannot find input case " + casename );
}
int64_t convertMessageType(const Message::type& mtype)
{
switch (mtype) {
case Message::type::Debug:
return Log::MessageType::Debug;
case Message::type::Info:
return Log::MessageType::Info;
case Message::type::Warning:
return Log::MessageType::Warning;
case Message::type::Error:
return Log::MessageType::Error;
case Message::type::Problem:
return Log::MessageType::Problem;
case Message::type::Bug:
return Log::MessageType::Bug;
case Message::type::Note:
return Log::MessageType::Note;
}
throw std::logic_error("Invalid messages type!\n");
}
} // namespace detail
} // namespace Opm
#endif // OPM_FLOWMAIN_HEADER_INCLUDED