opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp

365 lines
15 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class State, class PrevState>
void init(const Wells* wells, const State& state, const PrevState& prevState)
{
// call init on base class
BaseType :: init(wells, state);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = state.pressure()[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
well_potentials_.clear();
well_potentials_.resize(nperf * np, 0.0);
well_solutions_.clear();
well_solutions_.resize(nw * np, 0.0);
std::vector<double> g = {1.0,1.0,0.01};
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells->ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = current_controls_[w];
const WellType& well_type = wells->type[w];
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += wellRates()[np*w + p] * wells->comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += g[p] * wellRates()[np*w + p];
}
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
wellSolutions()[w] = bhp()[w];
}
break;
}
assert(np == 3);
double total_rates = 0.0;
for (int p = 0; p < np; ++p) {
total_rates += g[p] * wellRates()[np*w + p];
}
//if(std::abs(total_rates) > 0) {
// wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + Water] / total_rates; //wells->comp_frac[np*w + Water]; // Water;
// wellSolutions()[2*nw + w] = g[Gas] * wellRates()[np*w + Gas] / total_rates ; //wells->comp_frac[np*w + Gas]; //Gas
//} else {
wellSolutions()[nw + w] = wells->comp_frac[np*w + Water];
wellSolutions()[2*nw + w] = wells->comp_frac[np*w + Gas];
//}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
int nw_old = prevState.bhp().size();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// wellrates
double total_well_rates = 0.0;
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
total_well_rates += prevState.wellRates()[ oldidx ];
}
//if (std::abs(total_well_rates) > 0) {
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// wellSolutions
//if (std::abs(total_well_rates) > 0.0) {
//wellSolutions()[ 0*nw + newIndex ] = prevState.wellSolutions()[0 * nw_old + oldIndex ];
//if (wells->type[w] == PRODUCER) {
for( int i = 0; i < np; ++i)
{
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
}
//}
//}
// perfPhaseRates
int oldPerf_idx = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf = oldPerf_idx *np;
for (int perf = wells->well_connpos[ newIndex ]*np;
perf < wells->well_connpos[ newIndex + 1]*np; ++perf, ++oldPerf )
{
perfPhaseRates()[ perf ] = prevState.perfPhaseRates()[ oldPerf ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
}
}
// currentControls
const int old_control_index = prevState.currentControls()[ oldIndex ];
if (old_control_index < well_controls_get_num(wells->ctrls[w])) {
// If the set of controls have changed, this may not be identical
// to the last control, but it must be a valid control.
currentControls()[ newIndex ] = old_control_index;
WellControls* wc = wells->ctrls[newIndex];
well_controls_set_current( wc, old_control_index);
}
}
}
}
}
template <class State>
void resize(const Wells* wells, const State& state) {
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
init(wells, state, dummy_state) ;
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per well.
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
/// One rate per phase and well connection.
std::vector<double>& wellPotentials() { return well_potentials_; }
const std::vector<double>& wellPotentials() const { return well_potentials_; }
/// One rate per phase and well connection.
std::vector<double>& wellSolutions() { return well_solutions_; }
const std::vector<double>& wellSolutions() const { return well_solutions_; }
data::Wells report() const override {
data::Wells res = WellState::report();
const int nw = this->numWells();
// If there are now wells numPhases throws a floating point
// exception.
const int np = nw ? this->numPhases() : -1;
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( auto w = 0; w < nw; ++w ) {
using rt = data::Rates::opt;
std::map< size_t, data::Completion > completions;
// completions aren't supported yet
//const auto* begin = wells_->well_connpos + w;
//const auto* end = wells_->well_connpos + w + 1;
//for( auto* i = begin; i != end; ++i ) {
// const auto perfrate = this->perfPhaseRates().begin() + *i;
// data::Rates perfrates;
// perfrates.set( rt::wat, *(perfrate + 0) );
// perfrates.set( rt::oil, *(perfrate + 1) );
// perfrates.set( rt::gas, *(perfrate + 2) );
// const size_t active_index = wells_->well_cells[ *i ];
// completions.emplace( active_index,
// data::Completion{ active_index, perfrates } );
//}
const auto wellrate_index = np * w;
const auto& wv = this->wellRates();
data::Rates wellrates;
if( np == 3 ) {
/* only write if 3-phase solution */
wellrates.set( rt::wat, wv[ wellrate_index + 0 ] );
wellrates.set( rt::oil, wv[ wellrate_index + 1 ] );
wellrates.set( rt::gas, wv[ wellrate_index + 2 ] );
}
const double bhp = this->bhp()[ w ];
const double thp = this->thp()[ w ];
res.emplace( wells_->name[ w ],
data::Well { wellrates, bhp, thp, std::move( completions ) } );
}
return res;
}
WellStateFullyImplicitBlackoil() = default;
WellStateFullyImplicitBlackoil( const WellStateFullyImplicitBlackoil& rhs ) :
BaseType(rhs),
perfphaserates_( rhs.perfphaserates_ ),
current_controls_( rhs.current_controls_ ),
well_potentials_( rhs.well_potentials_ ),
well_solutions_( rhs.well_solutions_ )
{}
WellStateFullyImplicitBlackoil& operator=( const WellStateFullyImplicitBlackoil& rhs ) {
BaseType::operator =(rhs);
this->perfPhaseRates() = rhs.perfPhaseRates();
this->currentControls() = rhs.currentControls();
this->wellPotentials() = rhs.wellPotentials();
this->wellSolutions() = rhs.wellSolutions();
return *this;
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> well_potentials_;
std::vector<double> well_solutions_;
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED