opm-simulators/opm/simulators/wells/BlackoilWellModelGeneric.cpp
Bård Skaflestad 0c70eac490 Report Well Level Injection Guide Rates if Group Controlled
This commit uses the new GroupTreeWalker helper class to ensure that
we always extract and report pertinent injection guide rates at the
well level (i.e., WxIGR) if at least one of the groups in the well's
upline has an entry for the corresponding phase in GCONINJE.  This
is for increased compatibility with ECLIPSE.

Prior to this change we would report zero-valued WWIGR vectors on a
real field case which made analysing simulation results needlessly
difficult.
2021-11-02 16:19:56 +01:00

2368 lines
87 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>
#include <opm/output/data/GuideRateValue.hpp>
#include <opm/output/data/Groups.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRateConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRate.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/GasLiftStage2.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <algorithm>
#include <cassert>
#include <functional>
#include <stack>
#include <stdexcept>
#include <string_view>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <fmt/format.h>
namespace {
Opm::data::GuideRateValue::Item
guideRateRestartItem(const Opm::GuideRateModel::Target target)
{
using Item = Opm::data::GuideRateValue::Item;
using Target = Opm::GuideRateModel::Target;
static const auto items = std::unordered_map<Target, Item> {
{ Target::OIL, Item::Oil },
{ Target::GAS, Item::Gas },
{ Target::WAT, Item::Water },
{ Target::RES, Item::ResV },
};
auto i = items.find(target);
return (i == items.end()) ? Item::NumItems : i->second;
}
Opm::GuideRate::GuideRateValue
makeGuideRateValue(const Opm::data::GuideRateValue& restart,
const Opm::GuideRateModel::Target target)
{
const auto item = guideRateRestartItem(target);
if (! restart.has(item)) {
return {};
}
return { 0.0, restart.get(item), target };
}
struct RetrieveWellGuideRate
{
RetrieveWellGuideRate() = default;
explicit RetrieveWellGuideRate(const Opm::GuideRate& guideRate,
const std::string& wgname);
explicit RetrieveWellGuideRate(const Opm::GuideRate& guideRate,
const Opm::Group& group);
bool prod { false };
bool inj_water { false };
bool inj_gas { false };
};
RetrieveWellGuideRate
operator||(RetrieveWellGuideRate lhs, const RetrieveWellGuideRate& rhs)
{
lhs.prod = lhs.prod || rhs.prod;
lhs.inj_water = lhs.inj_water || rhs.inj_water;
lhs.inj_gas = lhs.inj_gas || rhs.inj_gas;
return lhs;
}
RetrieveWellGuideRate::RetrieveWellGuideRate(const Opm::GuideRate& guideRate,
const std::string& wgname)
: prod { guideRate.has(wgname) }
, inj_water { guideRate.has(wgname, Opm::Phase::WATER) }
, inj_gas { guideRate.has(wgname, Opm::Phase::GAS) }
{}
RetrieveWellGuideRate::RetrieveWellGuideRate(const Opm::GuideRate& guideRate,
const Opm::Group& group)
: RetrieveWellGuideRate{ guideRate, group.name() }
{
this->inj_water = this->inj_water || group.hasInjectionControl(Opm::Phase::WATER);
this->inj_gas = this->inj_gas || group.hasInjectionControl(Opm::Phase::GAS);
}
class GroupTreeWalker
{
public:
using GroupOp = std::function<void(const Opm::Group&)>;
using WellOp = std::function<void(const Opm::Well&)>;
explicit GroupTreeWalker(const Opm::Schedule& sched,
const int reportStepIdx)
: sched_ (sched)
, reportStepIdx_(reportStepIdx)
{}
GroupTreeWalker& groupOp(GroupOp visit)
{
this->visitGroup_ = std::move(visit);
return *this;
}
GroupTreeWalker& wellOp(WellOp visit)
{
this->visitWell_ = std::move(visit);
return *this;
}
void clear()
{
this->visitGroup_ = GroupOp{};
this->visitWell_ = WellOp{};
}
void traversePreOrder();
void traversePostOrder();
private:
using NodeOp = void (GroupTreeWalker::*)(std::string_view) const;
std::reference_wrapper<const Opm::Schedule> sched_;
int reportStepIdx_;
GroupOp visitGroup_{};
WellOp visitWell_{};
std::stack<std::string_view, std::vector<std::string_view>> dfsGroupStack_{};
std::unordered_set<std::size_t> dfsGroupDiscovered_{};
NodeOp postDiscover_{nullptr};
NodeOp preFinish_{nullptr};
void traverse();
void startWalk();
void discover(std::string_view group);
void finish(std::string_view group);
bool isSeen(std::string_view group) const;
std::size_t insertIndex(std::string_view group) const;
void visitGroup(std::string_view group) const;
void visitWell(std::string_view well) const;
const Opm::Group& getGroup(std::string_view group) const;
const Opm::Well& getWell(std::string_view well) const;
};
void GroupTreeWalker::traversePreOrder()
{
this->preFinish_ = nullptr;
this->postDiscover_ = &GroupTreeWalker::visitGroup;
this->traverse();
}
void GroupTreeWalker::traversePostOrder()
{
this->preFinish_ = &GroupTreeWalker::visitGroup;
this->postDiscover_ = nullptr;
this->traverse();
}
void GroupTreeWalker::traverse()
{
this->startWalk();
while (! this->dfsGroupStack_.empty()) {
const auto gname = this->dfsGroupStack_.top();
if (this->isSeen(gname)) {
if (this->preFinish_ != nullptr) {
(this->*preFinish_)(gname);
}
this->finish(gname);
continue;
}
this->discover(gname);
if (this->postDiscover_ != nullptr) {
(this->*postDiscover_)(gname);
}
const auto& group = this->getGroup(gname);
if (! group.wellgroup()) { // Node group. Register child groups.
for (const auto& child : group.groups()) {
if (! this->isSeen(child)) {
this->dfsGroupStack_.push(child);
}
}
}
else { // Group is a well group--visit its wells.
for (const auto& well : group.wells()) {
this->visitWell(well);
}
}
}
}
void GroupTreeWalker::startWalk()
{
this->dfsGroupDiscovered_.clear();
while (! this->dfsGroupStack_.empty()) {
this->dfsGroupStack_.pop();
}
this->dfsGroupStack_.push("FIELD");
}
void GroupTreeWalker::discover(std::string_view group)
{
this->dfsGroupDiscovered_.insert(this->insertIndex(group));
}
void GroupTreeWalker::finish(std::string_view group)
{
if (this->dfsGroupStack_.top() != group) {
throw std::invalid_argument {
fmt::format("Internal Error: Expected group '{}', but got '{}'",
group, this->dfsGroupStack_.top())
};
}
this->dfsGroupStack_.pop();
}
bool GroupTreeWalker::isSeen(std::string_view group) const
{
return this->dfsGroupDiscovered_.find(this->insertIndex(group))
!= this->dfsGroupDiscovered_.end();
}
std::size_t GroupTreeWalker::insertIndex(std::string_view group) const
{
return this->getGroup(group).insert_index();
}
void GroupTreeWalker::visitGroup(std::string_view group) const
{
if (! this->visitGroup_) {
return;
}
this->visitGroup_(this->getGroup(group));
}
void GroupTreeWalker::visitWell(std::string_view well) const
{
if (! this->visitWell_) {
return;
}
this->visitWell_(this->getWell(well));
}
const Opm::Group& GroupTreeWalker::getGroup(std::string_view group) const
{
return this->sched_.get().getGroup({group.data(), group.size()}, this->reportStepIdx_);
}
const Opm::Well& GroupTreeWalker::getWell(std::string_view well) const
{
return this->sched_.get().getWell({well.data(), well.size()}, this->reportStepIdx_);
}
} // Anonymous
namespace Opm {
BlackoilWellModelGeneric::
BlackoilWellModelGeneric(Schedule& schedule,
const SummaryState& summaryState,
const EclipseState& eclState,
const PhaseUsage& phase_usage,
const Parallel::Communication& comm)
: schedule_(schedule)
, summaryState_(summaryState)
, eclState_(eclState)
, comm_(comm)
, phase_usage_(phase_usage)
, guideRate_(schedule)
, active_wgstate_(phase_usage)
, last_valid_wgstate_(phase_usage)
, nupcol_wgstate_(phase_usage)
{
const auto numProcs = comm_.size();
this->not_on_process_ = [this, numProcs](const Well& well) {
if (numProcs == decltype(numProcs){1})
return false;
// Recall: false indicates NOT active!
const auto value = std::make_pair(well.name(), true);
auto candidate = std::lower_bound(this->parallel_well_info_.begin(),
this->parallel_well_info_.end(),
value);
return (candidate == this->parallel_well_info_.end())
|| (*candidate != value);
};
}
int
BlackoilWellModelGeneric::
numLocalWells() const
{
return wells_ecl_.size();
}
int
BlackoilWellModelGeneric::
numPhases() const
{
return phase_usage_.num_phases;
}
bool
BlackoilWellModelGeneric::
hasWell(const std::string& wname)
{
return std::any_of(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&wname](const Well& well)
{
return well.name() == wname;
});
}
bool
BlackoilWellModelGeneric::
wellsActive() const
{
return wells_active_;
}
bool
BlackoilWellModelGeneric::
localWellsActive() const
{
return numLocalWells() > 0;
}
bool
BlackoilWellModelGeneric::
anyMSWellOpenLocal() const
{
for (const auto& well : wells_ecl_) {
if (well.isMultiSegment()) {
return true;
}
}
return false;
}
const Well&
BlackoilWellModelGeneric::
getWellEcl(const std::string& well_name) const
{
// finding the iterator of the well in wells_ecl
auto well_ecl = std::find_if(wells_ecl_.begin(),
wells_ecl_.end(),
[&well_name](const Well& elem)->bool {
return elem.name() == well_name;
});
assert(well_ecl != wells_ecl_.end());
return *well_ecl;
}
void
BlackoilWellModelGeneric::
loadRestartConnectionData(const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
const std::vector<PerforationData>& old_perf_data,
SingleWellState& ws)
{
auto& perf_data = ws.perf_data;
auto perf_pressure = perf_data.pressure.begin();
auto perf_rates = perf_data.rates.begin();
auto perf_phase_rates = perf_data.phase_rates.begin();
for (const auto& pd : old_perf_data) {
const auto& rst_connection = rst_well.connections[pd.ecl_index];
*perf_pressure = rst_connection.pressure; ++perf_pressure;
*perf_rates = rst_connection.reservoir_rate; ++perf_rates;
for (const auto& phase : phs) {
*perf_phase_rates = rst_connection.rates.get(phase);
++perf_phase_rates;
}
}
}
void
BlackoilWellModelGeneric::
loadRestartSegmentData(const std::string& well_name,
const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
SingleWellState& ws)
{
const auto& segment_set = this->getWellEcl(well_name).getSegments();
const auto& rst_segments = rst_well.segments;
// \Note: Eventually we need to handle the situations that some segments are shut
assert(0u + segment_set.size() == rst_segments.size());
const auto np = phs.size();
const auto pres_idx = data::SegmentPressures::Value::Pressure;
auto& segments = ws.segments;
auto& segment_pressure = segments.pressure;
auto& segment_rates = segments.rates;
for (const auto& [segNum, rst_segment] : rst_segments) {
const int segment_index = segment_set.segmentNumberToIndex(segNum);
// Recovering segment rates and pressure from the restart values
segment_pressure[segment_index] = rst_segment.pressures[pres_idx];
const auto& rst_segment_rates = rst_segment.rates;
for (auto p = 0*np; p < np; ++p) {
segment_rates[segment_index*np + p] = rst_segment_rates.get(phs[p]);
}
}
}
void
BlackoilWellModelGeneric::
loadRestartWellData(const std::string& well_name,
const bool handle_ms_well,
const std::vector<data::Rates::opt>& phs,
const data::Well& rst_well,
const std::vector<PerforationData>& old_perf_data,
SingleWellState& ws)
{
const auto np = phs.size();
ws.bhp = rst_well.bhp;
ws.thp = rst_well.thp;
ws.temperature = rst_well.temperature;
if (rst_well.current_control.isProducer) {
ws.production_cmode = rst_well.current_control.prod;
}
else {
ws.injection_cmode = rst_well.current_control.inj;
}
for (auto i = 0*np; i < np; ++i) {
assert( rst_well.rates.has( phs[ i ] ) );
ws.surface_rates[i] = rst_well.rates.get(phs[i]);
}
this->loadRestartConnectionData(phs, rst_well, old_perf_data, ws);
if (handle_ms_well && !rst_well.segments.empty()) {
this->loadRestartSegmentData(well_name, phs, rst_well, ws);
}
}
void
BlackoilWellModelGeneric::
loadRestartGroupData(const std::string& group,
const data::GroupData& value)
{
using GPMode = Group::ProductionCMode;
using GIMode = Group::InjectionCMode;
const auto cpc = value.currentControl.currentProdConstraint;
const auto cgi = value.currentControl.currentGasInjectionConstraint;
const auto cwi = value.currentControl.currentWaterInjectionConstraint;
auto& grpState = this->groupState();
if (cpc != GPMode::NONE) {
grpState.production_control(group, cpc);
}
if (cgi != GIMode::NONE) {
grpState.injection_control(group, Phase::GAS, cgi);
}
if (cwi != GIMode::NONE) {
grpState.injection_control(group, Phase::WATER, cwi);
}
}
void
BlackoilWellModelGeneric::
loadRestartGuideRates(const int report_step,
const GuideRateModel::Target target,
const data::Wells& rst_wells)
{
for (const auto& [well_name, rst_well] : rst_wells) {
if (! this->hasWell(well_name) || this->getWellEcl(well_name).isInjector()) {
continue;
}
this->guideRate_.init_grvalue_SI(report_step, well_name,
makeGuideRateValue(rst_well.guide_rates, target));
}
}
void
BlackoilWellModelGeneric::
loadRestartGuideRates(const int report_step,
const GuideRateConfig& config,
const std::map<std::string, data::GroupData>& rst_groups)
{
const auto target = config.model().target();
for (const auto& [group_name, rst_group] : rst_groups) {
if (! config.has_production_group(group_name)) {
continue;
}
const auto& group = config.production_group(group_name);
if ((group.guide_rate > 0.0) || (group.target != Group::GuideRateProdTarget::FORM)) {
continue;
}
this->guideRate_.init_grvalue_SI(report_step, group_name,
makeGuideRateValue(rst_group.guideRates.production, target));
}
}
void
BlackoilWellModelGeneric::
loadRestartData(const data::Wells& rst_wells,
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellState& well_state)
{
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector<rt> phs(np);
if (phases.phase_used[BlackoilPhases::Aqua]) {
phs.at(phases.phase_pos[BlackoilPhases::Aqua]) = rt::wat;
}
if (phases.phase_used[BlackoilPhases::Liquid]) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if (phases.phase_used[BlackoilPhases::Vapour]) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for (auto well_index = 0*well_state.size();
well_index < well_state.size();
++well_index)
{
const auto& well_name = well_state.name(well_index);
this->loadRestartWellData(well_name, handle_ms_well, phs,
rst_wells.at(well_name),
this->well_perf_data_[well_index],
well_state.well(well_index));
}
for (const auto& [group, value] : grpNwrkValues.groupData) {
this->loadRestartGroupData(group, value);
}
}
void
BlackoilWellModelGeneric::
initFromRestartFile(const RestartValue& restartValues,
WellTestState wtestState,
const size_t numCells,
bool handle_ms_well)
{
// The restart step value is used to identify wells present at the given
// time step. Wells that are added at the same time step as RESTART is initiated
// will not be present in a restart file. Use the previous time step to retrieve
// wells that have information written to the restart file.
const int report_step = std::max(eclState_.getInitConfig().getRestartStep() - 1, 0);
const auto& config = this->schedule()[report_step].guide_rate();
// wells_ecl_ should only contain wells on this processor.
wells_ecl_ = getLocalWells(report_step);
this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
this->initializeWellProdIndCalculators();
this->initializeWellPerfData();
if (! this->wells_ecl_.empty()) {
handle_ms_well &= anyMSWellOpenLocal();
// Resize for restart step
this->wellState().resize(this->wells_ecl_, this->local_parallel_well_info_,
this->schedule(), handle_ms_well, numCells,
this->well_perf_data_, this->summaryState_);
loadRestartData(restartValues.wells, restartValues.grp_nwrk,
this->phase_usage_, handle_ms_well, this->wellState());
if (config.has_model()) {
this->loadRestartGuideRates(report_step,
config.model().target(),
restartValues.wells);
}
}
if (config.has_model()) {
this->loadRestartGuideRates(report_step, config, restartValues.grp_nwrk.groupData);
this->guideRate_.updateGuideRateExpiration(this->schedule().seconds(report_step), report_step);
}
this->active_wgstate_.wtest_state(std::move(wtestState));
this->commitWGState();
initial_step_ = false;
}
void
BlackoilWellModelGeneric::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
std::vector<Well>
BlackoilWellModelGeneric::
getLocalWells(const int timeStepIdx) const
{
auto w = schedule().getWells(timeStepIdx);
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w;
}
std::vector<std::reference_wrapper<ParallelWellInfo>>
BlackoilWellModelGeneric::
createLocalParallelWellInfo(const std::vector<Well>& wells)
{
std::vector<std::reference_wrapper<ParallelWellInfo>> local_parallel_well_info;
local_parallel_well_info.reserve(wells.size());
for (const auto& well : wells)
{
auto wellPair = std::make_pair(well.name(), true);
auto pwell = std::lower_bound(parallel_well_info_.begin(),
parallel_well_info_.end(),
wellPair);
assert(pwell != parallel_well_info_.end() &&
*pwell == wellPair);
local_parallel_well_info.push_back(std::ref(*pwell));
}
return local_parallel_well_info;
}
void
BlackoilWellModelGeneric::
initializeWellProdIndCalculators()
{
this->prod_index_calc_.clear();
this->prod_index_calc_.reserve(this->wells_ecl_.size());
for (const auto& well : this->wells_ecl_) {
this->prod_index_calc_.emplace_back(well);
}
}
void
BlackoilWellModelGeneric::
initializeWellPerfData()
{
well_perf_data_.resize(wells_ecl_.size());
int well_index = 0;
for (const auto& well : wells_ecl_) {
int completion_index = 0;
// INVALID_ECL_INDEX marks no above perf available
int completion_index_above = ParallelWellInfo::INVALID_ECL_INDEX;
well_perf_data_[well_index].clear();
well_perf_data_[well_index].reserve(well.getConnections().size());
CheckDistributedWellConnections checker(well, local_parallel_well_info_[well_index].get());
bool hasFirstPerforation = false;
bool firstOpenCompletion = true;
auto& parallelWellInfo = this->local_parallel_well_info_[well_index].get();
parallelWellInfo.beginReset();
for (const auto& completion : well.getConnections()) {
const int active_index = compressedIndexForInterior(completion.global_index());
if (completion.state() == Connection::State::OPEN) {
if (active_index >= 0) {
if (firstOpenCompletion)
{
hasFirstPerforation = true;
}
checker.connectionFound(completion_index);
PerforationData pd;
pd.cell_index = active_index;
pd.connection_transmissibility_factor = completion.CF();
pd.satnum_id = completion.satTableId();
pd.ecl_index = completion_index;
well_perf_data_[well_index].push_back(pd);
parallelWellInfo.pushBackEclIndex(completion_index_above,
completion_index);
}
firstOpenCompletion = false;
// Next time this index is the one above as each open completion is
// is stored somehwere.
completion_index_above = completion_index;
} else {
checker.connectionFound(completion_index);
if (completion.state() != Connection::State::SHUT) {
OPM_THROW(std::runtime_error,
"Completion state: " << Connection::State2String(completion.state()) << " not handled");
}
}
// Note: we rely on the connections being filtered! I.e. there are only connections
// to active cells in the global grid.
++completion_index;
}
parallelWellInfo.endReset();
checker.checkAllConnectionsFound();
parallelWellInfo.communicateFirstPerforation(hasFirstPerforation);
++well_index;
}
}
bool
BlackoilWellModelGeneric::
checkGroupConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const
{
if (group.isInjectionGroup()) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
const auto& check = checkGroupInjectionConstraints(group, reportStepIdx, phase);
if (check.first != Group::InjectionCMode::NONE) {
return true;
}
}
}
if (group.isProductionGroup()) {
const auto& check = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger);
if (check.first != Group::ProductionCMode::NONE)
{
return true;
}
}
// call recursively down the group hiearchy
bool violated = false;
for (const std::string& groupName : group.groups()) {
violated = violated || checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), reportStepIdx, deferred_logger);
}
return violated;
}
std::pair<Group::InjectionCMode, double>
BlackoilWellModelGeneric::
checkGroupInjectionConstraints(const Group& group,
const int reportStepIdx,
const Phase& phase) const
{
const auto& well_state = this->wellState();
int phasePos;
if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid])
phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid];
else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] )
phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua];
else
OPM_THROW(std::runtime_error, "Unknown phase" );
auto currentControl = this->groupState().injection_control(group.name(), phase);
if (group.has_control(phase, Group::InjectionCMode::RATE))
{
if (currentControl != Group::InjectionCMode::RATE)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
const auto& controls = group.injectionControls(phase, this->summaryState_);
double target = controls.surface_max_rate;
if (group.has_gpmaint_control(phase, Group::InjectionCMode::RATE))
target = this->groupState().gpmaint_target(group.name());
if (target < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::InjectionCMode::RATE, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::RESV))
{
if (currentControl != Group::InjectionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
const auto& controls = group.injectionControls(phase, this->summaryState_);
double target = controls.resv_max_rate;
if (group.has_gpmaint_control(phase, Group::InjectionCMode::RESV))
target = this->groupState().gpmaint_target(group.name());
if (target < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::InjectionCMode::RESV, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::REIN))
{
if (currentControl != Group::InjectionCMode::REIN)
{
double production_Rate = 0.0;
const auto& controls = group.injectionControls(phase, this->summaryState_);
const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx);
production_Rate += WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false);
// sum over all nodes
production_Rate = comm_.sum(production_Rate);
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.target_reinj_fraction*production_Rate < current_rate) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.target_reinj_fraction*production_Rate / current_rate;
return std::make_pair(Group::InjectionCMode::REIN, scale);
}
}
}
if (group.has_control(phase, Group::InjectionCMode::VREP))
{
if (currentControl != Group::InjectionCMode::VREP)
{
double voidage_rate = 0.0;
const auto& controls = group.injectionControls(phase, this->summaryState_);
const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
voidage_rate = comm_.sum(voidage_rate);
double total_rate = 0.0;
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
total_rate = comm_.sum(total_rate);
if (controls.target_void_fraction*voidage_rate < total_rate) {
double scale = 1.0;
if (total_rate > 1e-12)
scale = controls.target_void_fraction*voidage_rate / total_rate;
return std::make_pair(Group::InjectionCMode::VREP, scale);
}
}
}
return std::make_pair(Group::InjectionCMode::NONE, 1.0);
}
std::pair<Group::ProductionCMode, double>
BlackoilWellModelGeneric::
checkGroupProductionConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const
{
const auto& well_state = this->wellState();
const auto controls = group.productionControls(summaryState_);
const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name());
if (group.has_control(Group::ProductionCMode::ORAT))
{
if (currentControl != Group::ProductionCMode::ORAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.oil_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.oil_target / current_rate;
return std::make_pair(Group::ProductionCMode::ORAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::WRAT))
{
if (currentControl != Group::ProductionCMode::WRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.water_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.water_target / current_rate;
return std::make_pair(Group::ProductionCMode::WRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::GRAT))
{
if (currentControl != Group::ProductionCMode::GRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.gas_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.gas_target / current_rate;
return std::make_pair(Group::ProductionCMode::GRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::LRAT))
{
if (currentControl != Group::ProductionCMode::LRAT)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false);
current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false);
// sum over all nodes
current_rate = comm_.sum(current_rate);
if (controls.liquid_target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = controls.liquid_target / current_rate;
return std::make_pair(Group::ProductionCMode::LRAT, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::CRAT))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger);
}
if (group.has_control(Group::ProductionCMode::RESV))
{
if (currentControl != Group::ProductionCMode::RESV)
{
double current_rate = 0.0;
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true);
current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true);
// sum over all nodes
current_rate = comm_.sum(current_rate);
double target = controls.resv_target;
if (group.has_gpmaint_control(Group::ProductionCMode::RESV))
target = this->groupState().gpmaint_target(group.name());
if ( target < current_rate ) {
double scale = 1.0;
if (current_rate > 1e-12)
scale = target / current_rate;
return std::make_pair(Group::ProductionCMode::RESV, scale);
}
}
}
if (group.has_control(Group::ProductionCMode::PRBL))
{
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger);
}
return std::make_pair(Group::ProductionCMode::NONE, 1.0);
}
void
BlackoilWellModelGeneric::
checkGconsaleLimits(const Group& group,
WellState& well_state,
const int reportStepIdx,
DeferredLogger& deferred_logger)
{
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, reportStepIdx, deferred_logger);
}
// only for groups with gas injection controls
if (!group.hasInjectionControl(Phase::GAS)) {
return;
}
// check if gconsale is used for this group
if (!schedule()[reportStepIdx].gconsale().has(group.name()))
return;
std::ostringstream ss;
const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState_);
const Group::ProductionCMode& oldProductionControl = this->groupState().production_control(group.name());
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
double production_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false);
double injection_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true);
// sum over all nodes
injection_rate = comm_.sum(injection_rate);
production_rate = comm_.sum(production_rate);
double sales_rate = production_rate - injection_rate;
double production_target = gconsale.sales_target + injection_rate;
// add import rate and substract consumption rate for group for gas
if (schedule()[reportStepIdx].gconsump().has(group.name())) {
const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState_);
if (phase_usage_.phase_used[BlackoilPhases::Vapour]) {
sales_rate += gconsump.import_rate;
sales_rate -= gconsump.consumption_rate;
production_target -= gconsump.import_rate;
production_target += gconsump.consumption_rate;
}
}
if (sales_rate > gconsale.max_sales_rate) {
switch(gconsale.max_proc) {
case GConSale::MaxProcedure::NONE: {
if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) {
ss << "Group sales exceed maximum limit, but the action is NONE for " + group.name() + ". Nothing happens";
}
break;
}
case GConSale::MaxProcedure::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::CON_P: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::MAXR: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::END: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger);
break;
}
case GConSale::MaxProcedure::RATE: {
this->groupState().production_control(group.name(), Group::ProductionCMode::GRAT);
ss << "Maximum GCONSALE limit violated for " << group.name() << ". The group is switched from ";
ss << Group::ProductionCMode2String(oldProductionControl) << " to " << Group::ProductionCMode2String(Group::ProductionCMode::GRAT);
ss << " and limited by the maximum sales rate after consumption and import are considered" ;
this->groupState().update_grat_sales_target(group.name(), production_target);
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
}
if (sales_rate < gconsale.min_sales_rate) {
const Group::ProductionCMode& currentProductionControl = this->groupState().production_control(group.name());
if ( currentProductionControl == Group::ProductionCMode::GRAT ) {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value and is under GRAT control. \n";
ss << "The GRAT is increased to meet the sales minimum rate. \n";
this->groupState().update_grat_sales_target(group.name(), production_target);
//} else if () {//TODO add action for WGASPROD
//} else if () {//TODO add action for drilling queue
} else {
ss << "Group " + group.name() + " has sale rate less then minimum permitted value but cannot increase the group production rate \n";
ss << "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n";
ss << "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken. \n ";
}
}
if (gconsale.sales_target < 0.0) {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger);
}
if (!ss.str().empty() && comm_.rank() == 0)
deferred_logger.info(ss.str());
}
bool
BlackoilWellModelGeneric::
checkGroupHigherConstraints(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
// Set up coefficients for RESV <-> surface rate conversion.
// Use the pvtRegionIdx from the top cell of the first well.
// TODO fix this!
// This is only used for converting RESV rates.
// What is the proper approach?
const int fipnum = 0;
int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty()
? pvt_region_idx_[0]
: pvt_region_idx_[well_perf_data_[0][0].cell_index];
bool changed = false;
if ( comm_.size() > 1)
{
// Just like in the sequential case the pvtregion is determined
// by the first cell of the first well. What is the first well
// is decided by the order in the Schedule using Well::seqIndex()
int firstWellIndex = well_perf_data_.empty() ?
std::numeric_limits<int>::max() : wells_ecl_[0].seqIndex();
auto regIndexPair = std::make_pair(pvtreg, firstWellIndex);
std::vector<decltype(regIndexPair)> pairs(comm_.size());
comm_.allgather(&regIndexPair, 1, pairs.data());
pvtreg = std::min_element(pairs.begin(), pairs.end(),
[](const auto& p1, const auto& p2){ return p1.second < p2.second;})
->first;
}
std::vector<double> rates(phase_usage_.num_phases, 0.0);
const bool skip = switched_groups.count(group.name()) || group.name() == "FIELD";
if (!skip && group.isInjectionGroup()) {
// Obtain rates for group.
std::vector<double> resv_coeff_inj(phase_usage_.num_phases, 0.0);
calcInjRates(fipnum, pvtreg, resv_coeff_inj);
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ true);
// Sum over all processes
rates[phasePos] = comm_.sum(local_current_rate);
}
const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS };
for (Phase phase : all) {
// Check higher up only if under individual (not FLD) control.
auto currentControl = this->groupState().injection_control(group.name(), phase);
if (currentControl != Group::InjectionCMode::FLD && group.injectionGroupControlAvailable(phase)) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed_this = WellGroupHelpers::checkGroupConstraintsInj(
group.name(),
group.parent(),
parentGroup,
this->wellState(),
this->groupState(),
reportStepIdx,
&guideRate_,
rates.data(),
phase,
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState_,
resv_coeff_inj,
deferred_logger);
if (changed_this.first) {
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ true, this->groupState(), this->wellState());
changed = true;
}
}
}
}
if (!skip && group.isProductionGroup()) {
// Obtain rates for group.
for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) {
const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ false);
// Sum over all processes
rates[phasePos] = -comm_.sum(local_current_rate);
}
std::vector<double> resv_coeff(phase_usage_.num_phases, 0.0);
calcRates(fipnum, pvtreg, resv_coeff);
// Check higher up only if under individual (not FLD) control.
const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name());
if (currentControl != Group::ProductionCMode::FLD && group.productionGroupControlAvailable()) {
const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx);
const std::pair<bool, double> changed_this = WellGroupHelpers::checkGroupConstraintsProd(
group.name(),
group.parent(),
parentGroup,
this->wellState(),
this->groupState(),
reportStepIdx,
&guideRate_,
rates.data(),
phase_usage_,
group.getGroupEfficiencyFactor(),
schedule(),
summaryState_,
resv_coeff,
deferred_logger);
if (changed_this.first) {
switched_groups.insert(group.name());
const auto exceed_action = group.productionControls(summaryState_).exceed_action;
actionOnBrokenConstraints(group, exceed_action, Group::ProductionCMode::FLD, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
bool changed_this = checkGroupHigherConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups);
changed = changed || changed_this;
}
return changed;
}
bool
BlackoilWellModelGeneric::
updateGroupIndividualControl(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
bool changed = false;
const bool skip = switched_groups.count(group.name());
if (!skip && group.isInjectionGroup())
{
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!group.hasInjectionControl(phase)) {
continue;
}
const auto& changed_this = checkGroupInjectionConstraints(group, reportStepIdx, phase);
if (changed_this.first != Group::InjectionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, changed_this.first, phase, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
}
if (!skip && group.isProductionGroup()) {
const auto& changed_this = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger);
const auto controls = group.productionControls(summaryState_);
if (changed_this.first != Group::ProductionCMode::NONE)
{
switched_groups.insert(group.name());
actionOnBrokenConstraints(group, controls.exceed_action, changed_this.first, deferred_logger);
WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed_this.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState());
changed = true;
}
}
// call recursively down the group hiearchy
for (const std::string& groupName : group.groups()) {
bool changed_this = updateGroupIndividualControl( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups);
changed = changed || changed_this;
}
return changed;
}
bool
BlackoilWellModelGeneric::
updateGroupIndividualControls(DeferredLogger& deferred_logger,
std::set<std::string>& switched_groups,
const int reportStepIdx,
const int iterationIdx)
{
const int nupcol = schedule()[reportStepIdx].nupcol();
// don't switch group control when iterationIdx > nupcol
// to avoid oscilations between group controls
if (iterationIdx > nupcol)
return false;
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
return updateGroupIndividualControl(fieldGroup, deferred_logger,
reportStepIdx, switched_groups);
}
bool
BlackoilWellModelGeneric::
updateGroupHigherControls(DeferredLogger& deferred_logger,
const int reportStepIdx,
std::set<std::string>& switched_groups)
{
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
return checkGroupHigherConstraints(fieldGroup, deferred_logger, reportStepIdx, switched_groups);
}
void
BlackoilWellModelGeneric::
actionOnBrokenConstraints(const Group& group,
const Group::ExceedAction& exceed_action,
const Group::ProductionCMode& newControl,
DeferredLogger& deferred_logger)
{
const Group::ProductionCMode oldControl = this->groupState().production_control(group.name());
std::ostringstream ss;
switch(exceed_action) {
case Group::ExceedAction::NONE: {
if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) {
ss << "Group production exceed action is NONE for group " + group.name() + ". Nothing happens.";
}
break;
}
case Group::ExceedAction::CON: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger);
break;
}
case Group::ExceedAction::CON_PLUS: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger);
break;
}
case Group::ExceedAction::WELL: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger);
break;
}
case Group::ExceedAction::PLUG: {
OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger);
break;
}
case Group::ExceedAction::RATE: {
if (oldControl != newControl) {
this->groupState().production_control(group.name(), newControl);
ss << "Switching production control mode for group "<< group.name()
<< " from " << Group::ProductionCMode2String(oldControl)
<< " to " << Group::ProductionCMode2String(newControl);
}
break;
}
default:
throw("Invalid procedure for maximum rate limit selected for group" + group.name());
}
Parallel::Communication cc = comm_;
if (!ss.str().empty() && cc.rank() == 0)
deferred_logger.info(ss.str());
}
void
BlackoilWellModelGeneric::
actionOnBrokenConstraints(const Group& group,
const Group::InjectionCMode& newControl,
const Phase& controlPhase,
DeferredLogger& deferred_logger)
{
auto oldControl = this->groupState().injection_control(group.name(), controlPhase);
std::ostringstream ss;
if (oldControl != newControl) {
const std::string from = Group::InjectionCMode2String(oldControl);
ss << "Switching injection control mode for group "<< group.name()
<< " from " << Group::InjectionCMode2String(oldControl)
<< " to " << Group::InjectionCMode2String(newControl);
this->groupState().injection_control(group.name(), controlPhase, newControl);
}
Parallel::Communication cc = comm_;
if (!ss.str().empty() && cc.rank() == 0)
deferred_logger.info(ss.str());
}
void
BlackoilWellModelGeneric::
updateEclWells(const int timeStepIdx,
const std::unordered_set<std::string>& wells)
{
for (const auto& wname : wells) {
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&wname] (const auto& well) -> bool
{
return well.name() == wname;
});
if (well_iter == this->wells_ecl_.end()) {
continue;
}
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
this->wells_ecl_[well_index] = schedule_.getWell(wname, timeStepIdx);
const auto& well = this->wells_ecl_[well_index];
auto& pd = this->well_perf_data_[well_index];
auto pdIter = pd.begin();
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
pdIter->connection_transmissibility_factor = conn.CF();
++pdIter;
}
}
this->wellState().updateStatus(well_index, well.getStatus());
this->wellState().resetConnectionTransFactors(well_index, pd);
this->prod_index_calc_[well_index].reInit(well);
}
}
double
BlackoilWellModelGeneric::
wellPI(const int well_index) const
{
const auto& pu = this->phase_usage_;
const auto& pi = this->wellState().well(well_index).productivity_index;
const auto preferred = this->wells_ecl_[well_index].getPreferredPhase();
switch (preferred) { // Should really have LIQUID = OIL + WATER here too...
case Phase::WATER:
return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]]
: 0.0;
case Phase::OIL:
return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]]
: 0.0;
case Phase::GAS:
return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour]
? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]]
: 0.0;
default:
throw std::invalid_argument {
"Unsupported preferred phase " +
std::to_string(static_cast<int>(preferred))
};
}
}
double
BlackoilWellModelGeneric::
wellPI(const std::string& well_name) const
{
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
[&well_name](const Well& well)
{
return well.name() == well_name;
});
if (well_iter == this->wells_ecl_.end()) {
throw std::logic_error { "Could not find well: " + well_name };
}
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
return this->wellPI(well_index);
}
bool
BlackoilWellModelGeneric::
wasDynamicallyShutThisTimeStep(const int well_index) const
{
return this->closed_this_step_.find(this->wells_ecl_[well_index].name()) !=
this->closed_this_step_.end();
}
void
BlackoilWellModelGeneric::
updateWsolvent(const Group& group,
const int reportStepIdx,
const WellState& wellState)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx);
updateWsolvent(groupTmp, reportStepIdx, wellState);
}
if (group.isProductionGroup())
return;
auto currentGroupControl = this->groupState().injection_control(group.name(), Phase::GAS);
if( currentGroupControl == Group::InjectionCMode::REIN ) {
int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour];
const auto& controls = group.injectionControls(Phase::GAS, summaryState_);
const Group& groupRein = schedule_.getGroup(controls.reinj_group, reportStepIdx);
double gasProductionRate = WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule_, wellState, reportStepIdx, gasPos, /*isInjector*/false);
double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule_, wellState, reportStepIdx, /*isInjector*/false);
solventProductionRate = comm_.sum(solventProductionRate);
gasProductionRate = comm_.sum(gasProductionRate);
double wsolvent = 0.0;
if (std::abs(gasProductionRate) > 1e-6)
wsolvent = solventProductionRate / gasProductionRate;
setWsolvent(group, reportStepIdx, wsolvent);
}
}
void
BlackoilWellModelGeneric::
setWsolvent(const Group& group,
const int reportStepIdx,
double wsolvent)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx);
setWsolvent(groupTmp, reportStepIdx, wsolvent);
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule_.getWell(wellName, reportStepIdx);
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
getGenWell(wellName)->setWsolvent(wsolvent);
}
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateValues(const Well& well) const
{
auto grval = data::GuideRateValue{};
const auto& wname = well.name();
if (!this->wellState().has(wname)) {
// No flow rates for 'wname' -- might be before well comes
// online (e.g., for the initial condition before simulation
// starts).
return grval;
}
if (!this->guideRate_.has(wname)) {
// No guiderates exist for 'wname'.
return grval;
}
const auto qs = WellGroupHelpers::
getWellRateVector(this->wellState(), this->phase_usage_, wname);
this->getGuideRateValues(qs, well.isInjector(), wname, grval);
return grval;
}
void
BlackoilWellModelGeneric::
getGuideRateValues(const GuideRate::RateVector& qs,
const bool is_inj,
const std::string& wgname,
data::GuideRateValue& grval) const
{
auto getGR = [this, &wgname, &qs](const GuideRateModel::Target t)
{
return this->guideRate_.getSI(wgname, t, qs);
};
// Note: GuideRate does currently (2020-07-20) not support Target::RES.
grval.set(data::GuideRateValue::Item::Gas,
getGR(GuideRateModel::Target::GAS));
grval.set(data::GuideRateValue::Item::Water,
getGR(GuideRateModel::Target::WAT));
if (!is_inj) {
// Producer. Extract "all" guiderate values.
grval.set(data::GuideRateValue::Item::Oil,
getGR(GuideRateModel::Target::OIL));
}
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateValues(const Group& group) const
{
auto grval = data::GuideRateValue{};
const auto& gname = group.name();
if (!this->groupState().has_production_rates(gname)) {
// No flow rates for production group 'gname' -- might be before
// group comes online (e.g., for the initial condition before
// simulation starts).
return grval;
}
if (!this->guideRate_.has(gname)) {
// No guiderates exist for 'gname'.
return grval;
}
const auto qs = WellGroupHelpers::
getProductionGroupRateVector(this->groupState(), this->phase_usage_, gname);
const auto is_inj = false; // This procedure only applies to G*PGR.
this->getGuideRateValues(qs, is_inj, gname, grval);
return grval;
}
data::GuideRateValue
BlackoilWellModelGeneric::
getGuideRateInjectionGroupValues(const Group& group) const
{
auto grval = data::GuideRateValue{};
const auto& gname = group.name();
if (this->guideRate_.has(gname, Phase::GAS)) {
grval.set(data::GuideRateValue::Item::Gas,
this->guideRate_.getSI(gname, Phase::GAS));
}
if (this->guideRate_.has(gname, Phase::WATER)) {
grval.set(data::GuideRateValue::Item::Water,
this->guideRate_.getSI(gname, Phase::WATER));
}
return grval;
}
void
BlackoilWellModelGeneric::
assignWellGuideRates(data::Wells& wsrpt,
const int reportStepIdx) const
{
auto all = std::unordered_map<std::string, data::GuideRateValue>{};
auto retrieve = std::unordered_map<std::string, RetrieveWellGuideRate>{};
auto walker = GroupTreeWalker{ this->schedule(), reportStepIdx };
// Populates 'retrieve'.
walker.groupOp([this, &retrieve](const Group& group)
{
const auto& gname = group.name();
const auto parent = (gname == "FIELD")
? RetrieveWellGuideRate{}
: retrieve[group.parent()];
auto [elm, inserted] =
retrieve.emplace(std::piecewise_construct,
std::forward_as_tuple(gname),
std::forward_as_tuple(this->guideRate_, group));
if (inserted) {
elm->second = elm->second || parent;
}
});
// Populates 'all'.
walker.wellOp([this, &retrieve, &all](const Well& well)
{
const auto& wname = well.name();
const auto is_nontrivial =
this->guideRate_.has(wname) || this->guideRate_.hasPotentials(wname);
if (! (is_nontrivial && this->wellState().has(wname))) {
all[wname].clear();
return;
}
auto parent_pos = retrieve.find(well.groupName());
const auto parent = (parent_pos == retrieve.end())
? RetrieveWellGuideRate{} // No entry for 'parent'--unexpected.
: parent_pos->second;
const auto get_gr = parent
|| RetrieveWellGuideRate{ this->guideRate_, wname };
const auto qs = WellGroupHelpers::
getWellRateVector(this->wellState(), this->phase_usage_, wname);
auto getGR = [this, &wname, &qs](const GuideRateModel::Target t)
{
return this->guideRate_.getSI(wname, t, qs);
};
auto& grval = all[wname];
if (well.isInjector()) {
if (get_gr.inj_gas) { // Well supports WGIGR
grval.set(data::GuideRateValue::Item::Gas,
getGR(GuideRateModel::Target::GAS));
}
if (get_gr.inj_water) { // Well supports WWIGR
grval.set(data::GuideRateValue::Item::Water,
getGR(GuideRateModel::Target::WAT));
}
}
else if (get_gr.prod) { // Well is producer AND we want/support WxPGR
grval
.set(data::GuideRateValue::Item::Oil , getGR(GuideRateModel::Target::OIL))
.set(data::GuideRateValue::Item::Gas , getGR(GuideRateModel::Target::GAS))
.set(data::GuideRateValue::Item::Water, getGR(GuideRateModel::Target::WAT));
}
});
// Visit groups before their children, meaning no well is visited until
// all of its upline parent groups--up to FIELD--have been visited.
// Upon completion, 'all' contains guide rate values for all wells
// reachable from 'FIELD' at this time/report step.
walker.traversePreOrder();
for (const auto& well : this->wells_ecl_) {
auto xwPos = wsrpt.find(well.name());
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
continue;
}
auto grPos = all.find(well.name());
if (grPos == all.end()) {
continue;
}
xwPos->second.guide_rates = grPos->second;
}
}
void
BlackoilWellModelGeneric::
assignShutConnections(data::Wells& wsrpt,
const int reportStepIndex) const
{
auto wellID = 0;
for (const auto& well : this->wells_ecl_) {
auto& xwel = wsrpt[well.name()]; // data::Wells is a std::map<>
xwel.dynamicStatus = this->schedule()
.getWell(well.name(), reportStepIndex).getStatus();
const auto wellIsOpen = xwel.dynamicStatus == Well::Status::OPEN;
auto skip = [wellIsOpen](const Connection& conn)
{
return wellIsOpen && (conn.state() != Connection::State::SHUT);
};
if (this->wellTestState().well_is_closed(well.name()) &&
!this->wasDynamicallyShutThisTimeStep(wellID))
{
xwel.dynamicStatus = well.getAutomaticShutIn()
? Well::Status::SHUT : Well::Status::STOP;
}
auto& xcon = xwel.connections;
for (const auto& conn : well.getConnections()) {
if (skip(conn)) {
continue;
}
auto& xc = xcon.emplace_back();
xc.index = conn.global_index();
xc.pressure = xc.reservoir_rate = 0.0;
xc.effective_Kh = conn.Kh();
xc.trans_factor = conn.CF();
}
++wellID;
}
}
std::unordered_map<std::string, data::GroupGuideRates>
BlackoilWellModelGeneric::
calculateAllGroupGuiderates(const int reportStepIdx) const
{
auto gr = std::unordered_map<std::string, data::GroupGuideRates>{};
auto walker = GroupTreeWalker{ this->schedule(), reportStepIdx };
// Populates 'gr'.
walker.groupOp([this, &gr](const Group& group)
{
const auto& gname = group.name();
if (gname == "FIELD") { return; }
if (this->guideRate_.has(gname)) {
gr[gname].production = this->getGuideRateValues(group);
}
if (this->guideRate_.has(gname, Phase::WATER) ||
this->guideRate_.has(gname, Phase::GAS))
{
gr[gname].injection =
this->getGuideRateInjectionGroupValues(group);
}
const auto parent = group.parent();
if (parent == "FIELD") { return; }
gr[parent].injection += gr[gname].injection;
gr[parent].production += gr[gname].production;
});
// Populates 'gr'.
walker.wellOp([this, &gr](const Well& well)
{
if (! (this->guideRate_.has(well.name()) ||
this->guideRate_.hasPotentials(well.name())))
{
return;
}
const auto& gname = well.groupName();
auto& grval = well.isInjector()
? gr[gname].injection
: gr[gname].production;
grval += this->getGuideRateValues(well);
});
// Visit wells and groups before their parents, meaning no group is
// visited until all of its children down to the leaves of the group
// tree have been visited. Upon completion, 'gr' contains guide rate
// values for all groups reachable from 'FIELD' at this time/report
// step.
walker.traversePostOrder();
return gr;
}
void
BlackoilWellModelGeneric::
assignGroupControl(const Group& group,
data::GroupData& gdata) const
{
const auto& gname = group.name();
const auto grup_type = group.getGroupType();
auto& cgc = gdata.currentControl;
cgc.currentProdConstraint = Group::ProductionCMode::NONE;
cgc.currentGasInjectionConstraint =
cgc.currentWaterInjectionConstraint = Group::InjectionCMode::NONE;
if (this->groupState().has_production_control(gname)) {
cgc.currentProdConstraint = this->groupState().production_control(gname);
}
if ((grup_type == ::Opm::Group::GroupType::INJECTION) ||
(grup_type == ::Opm::Group::GroupType::MIXED))
{
if (this->groupState().has_injection_control(gname, Phase::WATER)) {
cgc.currentWaterInjectionConstraint = this->groupState().injection_control(gname, Phase::WATER);
}
if (this->groupState().has_injection_control(gname, Phase::GAS)) {
cgc.currentGasInjectionConstraint = this->groupState().injection_control(gname, Phase::GAS);
}
}
}
void
BlackoilWellModelGeneric::
assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const
{
auto& prod = gdata.guideRates.production; prod.clear();
auto& inj = gdata.guideRates.injection; inj .clear();
auto xgrPos = groupGuideRates.find(group.name());
if (xgrPos == groupGuideRates.end()) {
// No guiderates defined for this group.
return;
}
const auto& xgr = xgrPos->second;
if (this->guideRate_.has(group.name())) {
prod = xgr.production;
}
if (this->guideRate_.has(group.name(), Phase::WATER) ||
this->guideRate_.has(group.name(), Phase::GAS))
{
inj = xgr.injection;
}
}
void
BlackoilWellModelGeneric::
assignGroupValues(const int reportStepIdx,
std::map<std::string, data::GroupData>& gvalues) const
{
const auto groupGuideRates =
this->calculateAllGroupGuiderates(reportStepIdx);
for (const auto& gname : schedule_.groupNames(reportStepIdx)) {
const auto& grup = schedule_.getGroup(gname, reportStepIdx);
auto& gdata = gvalues[gname];
this->assignGroupControl(grup, gdata);
this->assignGroupGuideRates(grup, groupGuideRates, gdata);
}
}
void
BlackoilWellModelGeneric::
assignNodeValues(std::map<std::string, data::NodeData>& nodevalues) const
{
nodevalues.clear();
for (const auto& [node, pressure] : node_pressures_) {
nodevalues.emplace(node, data::NodeData{pressure});
}
}
data::GroupAndNetworkValues
BlackoilWellModelGeneric::
groupAndNetworkData(const int reportStepIdx) const
{
auto grp_nwrk_values = data::GroupAndNetworkValues{};
this->assignGroupValues(reportStepIdx, grp_nwrk_values.groupData);
this->assignNodeValues(grp_nwrk_values.nodeData);
return grp_nwrk_values;
}
void
BlackoilWellModelGeneric::
updateAndCommunicateGroupData(const int reportStepIdx,
const int iterationIdx)
{
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
const int nupcol = schedule()[reportStepIdx].nupcol();
// This builds some necessary lookup structures, so it must be called
// before we copy to well_state_nupcol_.
this->wellState().updateGlobalIsGrup(comm_);
if (iterationIdx < nupcol) {
this->updateNupcolWGState();
}
auto& well_state = this->wellState();
const auto& well_state_nupcol = this->nupcolWellState();
// the group target reduction rates needs to be update since wells may have switched to/from GRUP control
// The group target reduction does not honor NUPCOL.
std::vector<double> groupTargetReduction(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReduction);
std::vector<double> groupTargetReductionInj(numPhases(), 0.0);
WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReductionInj);
WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState_, well_state_nupcol, this->groupState());
WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateSurfaceRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState());
// We use the rates from the previous time-step to reduce oscillations
WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, this->prevWellState(), well_state);
// Set ALQ for off-process wells to zero
for (const auto& wname : schedule().wellNames(reportStepIdx)) {
const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer();
const bool not_on_this_process = !well_state.has(wname);
if (is_producer && not_on_this_process) {
well_state.setALQ(wname, 0.0);
}
}
well_state.communicateGroupRates(comm_);
this->groupState().communicate_rates(comm_);
}
bool
BlackoilWellModelGeneric::
hasTHPConstraints() const
{
int local_result = false;
for (const auto& well : well_container_generic_) {
if (well->wellHasTHPConstraints(summaryState_)) {
local_result=true;
}
}
return comm_.max(local_result);
}
bool
BlackoilWellModelGeneric::
forceShutWellByName(const std::string& wellname,
const double simulation_time)
{
// Only add the well to the closed list on the
// process that owns it.
int well_was_shut = 0;
for (const auto& well : well_container_generic_) {
if (well->name() == wellname && !well->wellIsStopped()) {
wellTestState().close_well(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time);
well_was_shut = 1;
break;
}
}
// Communicate across processes if a well was shut.
well_was_shut = comm_.max(well_was_shut);
// the wellTesteState is updated between timesteps and we also need to update the privous WGstate
if(well_was_shut)
this->commitWGState();
// Only log a message on the output rank.
if (terminal_output_ && well_was_shut) {
const std::string msg = "Well " + wellname
+ " will be shut because it cannot get converged.";
OpmLog::info(msg);
}
return (well_was_shut == 1);
}
void
BlackoilWellModelGeneric::
inferLocalShutWells()
{
this->local_shut_wells_.clear();
const auto nw = this->numLocalWells();
auto used = std::vector<bool>(nw, false);
for (const auto& wellPtr : this->well_container_generic_) {
used[wellPtr->indexOfWell()] = true;
}
for (auto wellID = 0; wellID < nw; ++wellID) {
if (! used[wellID]) {
this->local_shut_wells_.push_back(wellID);
}
}
}
void
BlackoilWellModelGeneric::
updateNetworkPressures(const int reportStepIdx)
{
// Get the network and return if inactive.
const auto& network = schedule()[reportStepIdx].network();
if (!network.active()) {
return;
}
node_pressures_ = WellGroupHelpers::computeNetworkPressures(network,
this->wellState(),
this->groupState(),
*(vfp_properties_->getProd()),
schedule(),
reportStepIdx);
// Set the thp limits of wells
for (auto& well : well_container_generic_) {
// Producers only, since we so far only support the
// "extended" network model (properties defined by
// BRANPROP and NODEPROP) which only applies to producers.
if (well->isProducer()) {
const auto it = node_pressures_.find(well->wellEcl().groupName());
if (it != node_pressures_.end()) {
// The well belongs to a group with has a network pressure constraint,
// set the dynamic THP constraint of the well accordingly.
well->setDynamicThpLimit(it->second);
}
}
}
}
void
BlackoilWellModelGeneric::
calculateEfficiencyFactors(const int reportStepIdx)
{
if ( !localWellsActive() ) {
return;
}
for (auto& well : well_container_generic_) {
const Well& wellEcl = well->wellEcl();
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor);
well->setWellEfficiencyFactor(well_efficiency_factor);
}
}
WellInterfaceGeneric*
BlackoilWellModelGeneric::
getGenWell(const std::string& well_name)
{
// finding the iterator of the well in wells_ecl
auto well = std::find_if(well_container_generic_.begin(),
well_container_generic_.end(),
[&well_name](const WellInterfaceGeneric* elem)->bool {
return elem->name() == well_name;
});
assert(well != well_container_generic_.end());
return *well;
}
void
BlackoilWellModelGeneric::
setRepRadiusPerfLength()
{
for (const auto& well : well_container_generic_) {
well->setRepRadiusPerfLength();
}
}
void
BlackoilWellModelGeneric::
gliftDebug(const std::string& msg,
DeferredLogger& deferred_logger) const
{
if (this->glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : BlackoilWellModel : {}", msg);
deferred_logger.info(message);
}
}
void
BlackoilWellModelGeneric::
gliftDebugShowALQ(DeferredLogger& deferred_logger)
{
for (auto& well : this->well_container_generic_) {
if (well->isProducer()) {
auto alq = this->wellState().getALQ(well->name());
const std::string msg = fmt::format("ALQ_REPORT : {} : {}",
well->name(), alq);
gliftDebug(msg, deferred_logger);
}
}
}
// If a group has any production rate constraints, and/or a limit
// on its total rate of lift gas supply, allocate lift gas
// preferentially to the wells that gain the most benefit from
// it. Lift gas increments are allocated in turn to the well that
// currently has the largest weighted incremental gradient. The
// procedure takes account of any limits on the group production
// rate or lift gas supply applied to any level of group.
void
BlackoilWellModelGeneric::
gasLiftOptimizationStage2(DeferredLogger& deferred_logger,
GLiftProdWells& prod_wells,
GLiftOptWells& glift_wells,
GLiftWellStateMap& glift_well_state_map,
const int episodeIndex)
{
GasLiftStage2 glift {episodeIndex,
comm_,
schedule_,
summaryState_,
deferred_logger,
this->wellState(),
prod_wells,
glift_wells,
glift_well_state_map};
glift.runOptimize();
}
void
BlackoilWellModelGeneric::
updateWellPotentials(const int reportStepIdx,
const bool onlyAfterEvent,
const SummaryConfig& summaryConfig,
DeferredLogger& deferred_logger)
{
auto well_state_copy = this->wellState();
const bool write_restart_file = schedule().write_rst_file(reportStepIdx);
auto exc_type = ExceptionType::NONE;
std::string exc_msg;
size_t widx = 0;
for (const auto& well : well_container_generic_) {
const bool needed_for_summary =
((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) ||
((summaryConfig.hasKeyword( "GWPI") ||
summaryConfig.hasKeyword( "GOPI") ||
summaryConfig.hasKeyword( "GGPI")) && well->isInjector()) ||
((summaryConfig.hasKeyword( "FWPI") ||
summaryConfig.hasKeyword( "FOPI") ||
summaryConfig.hasKeyword( "FGPI")) && well->isInjector()) ||
((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer()) ||
((summaryConfig.hasKeyword( "GWPP") ||
summaryConfig.hasKeyword( "GOPP") ||
summaryConfig.hasKeyword( "GGPP")) && well->isProducer()) ||
((summaryConfig.hasKeyword( "FWPP") ||
summaryConfig.hasKeyword( "FOPP") ||
summaryConfig.hasKeyword( "FGPP")) && well->isProducer());
// At the moment, the following events are considered
// for potentials update
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::COMPLETION_CHANGE
+ ScheduleEvents::WELL_PRODUCTIVITY_INDEX
+ ScheduleEvents::WELL_WELSPECS_UPDATE
+ ScheduleEvents::WELLGROUP_EFFICIENCY_UPDATE
+ ScheduleEvents::NEW_WELL
+ ScheduleEvents::PRODUCTION_UPDATE
+ ScheduleEvents::INJECTION_UPDATE;
const auto& events = schedule()[reportStepIdx].wellgroup_events();
const bool event = events.hasEvent(well->name(), ScheduleEvents::ACTIONX_WELL_EVENT) ||
(report_step_starts_ && events.hasEvent(well->name(), effective_events_mask));
const bool needPotentialsForGuideRates = well->underPredictionMode() && (!onlyAfterEvent || event);
const bool needPotentialsForOutput = !onlyAfterEvent && (needed_for_summary || write_restart_file);
const bool compute_potential = needPotentialsForOutput || needPotentialsForGuideRates;
if (compute_potential)
{
this->computePotentials(widx, well_state_copy, exc_msg, exc_type, deferred_logger);
}
++widx;
}
logAndCheckForExceptionsAndThrow(deferred_logger, exc_type,
"computeWellPotentials() failed: " + exc_msg,
terminal_output_, comm_);
}
void
BlackoilWellModelGeneric::
runWellPIScaling(const int timeStepIdx,
DeferredLogger& local_deferredLogger)
{
if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == timeStepIdx)) {
// We've already run WELPI scaling for this report step. Most
// common for the very first report step. Don't redo WELPI scaling.
return;
}
auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool
{
return this->schedule()[timeStepIdx].wellgroup_events()
.hasEvent(this->wells_ecl_[well_index].name(),
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
};
auto updateEclWell = [this, timeStepIdx](const int well_index) -> void
{
const auto& schedule = this->schedule();
const auto& wname = this->wells_ecl_[well_index].name();
this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx);
const auto& well = this->wells_ecl_[well_index];
auto& pd = this->well_perf_data_[well_index];
auto pdIter = pd.begin();
for (const auto& conn : well.getConnections()) {
if (conn.state() != Connection::State::SHUT) {
pdIter->connection_transmissibility_factor = conn.CF();
++pdIter;
}
}
this->wellState().resetConnectionTransFactors(well_index, pd);
this->prod_index_calc_[well_index].reInit(well);
};
auto rescaleWellPI =
[this, timeStepIdx](const int well_index,
const double newWellPI) -> void
{
const auto& wname = this->wells_ecl_[well_index].name();
schedule_.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
};
// Minimal well setup to compute PI/II values
{
auto saved_previous_wgstate = this->prevWGState();
this->commitWGState();
this->createWellContainer(timeStepIdx);
this->inferLocalShutWells();
this->initWellContainer();
this->calculateProductivityIndexValues(local_deferredLogger);
this->calculateProductivityIndexValuesShutWells(timeStepIdx, local_deferredLogger);
this->commitWGState(std::move(saved_previous_wgstate));
}
const auto nw = this->numLocalWells();
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
if (hasWellPIEvent(wellID)) {
rescaleWellPI(wellID, this->wellPI(wellID));
updateEclWell(wellID);
}
}
this->last_run_wellpi_ = timeStepIdx;
}
}