opm-simulators/opm/simulators/wells/StandardWellGeneric.cpp
Håkon Hægland 4970b0641e Improve debugging tools in gaslift code.
Introduces a gaslift debugging variable in ALQState in WellState. This
variable will persist between timesteps in contrast to when debugging
variables are defined in GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2.

Currently only an integer variable debug_counter is added to ALQState,
which can be used as follows: First debugging is switched on globally
for BlackOilWellModel, GasLiftSingleWell, GasLiftGroupState, and
GasLiftStage2 by setting glift_debug to a true value in BlackOilWellModelGeneric.
Then, the following debugging code can be added to e.g. one of
GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2 :

    auto count = debugUpdateGlobalCounter_();
    if (count == some_integer) {
        displayDebugMessage_("stop here");
    }

Here, the integer "some_integer" is determined typically by looking at
the debugging output of a previous run. This can be done since the
call to debugUpdateGlobalCounter_() will print out the current value
of the counter and then increment the counter by one. And it will be
easy to recognize these values in the debug ouput. If you find a place
in the output that looks suspect, just take a note of the counter
value in the output around that point and insert the value for
"some_integer", then after recompiling the code with the desired value
for "some_integer", it is now easy to set a breakpoint in GDB at the
line

    displayDebugMessage_("stop here").

shown in the above snippet. This should improve the ability to quickly
to set a breakpoint in GDB around at a given time and point in the simulation.
2022-01-23 20:37:26 +01:00

716 lines
29 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellGeneric.hpp>
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/input/eclipse/Schedule/GasLiftOpt.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <fmt/format.h>
#include <stdexcept>
namespace Opm
{
template<class Scalar>
StandardWellGeneric<Scalar>::
StandardWellGeneric(int Bhp,
const WellInterfaceGeneric& baseif)
: baseif_(baseif)
, perf_densities_(baseif_.numPerfs())
, perf_pressure_diffs_(baseif_.numPerfs())
, parallelB_(duneB_, baseif_.parallelWellInfo())
, Bhp_(Bhp)
{
duneB_.setBuildMode(OffDiagMatWell::row_wise);
duneC_.setBuildMode(OffDiagMatWell::row_wise);
invDuneD_.setBuildMode(DiagMatWell::row_wise);
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
relaxationFactorRate(const std::vector<double>& primary_variables,
const BVectorWell& dwells)
{
double relaxation_factor = 1.0;
static constexpr int WQTotal = 0;
// For injector, we only check the total rates to avoid sign change of rates
const double original_total_rate = primary_variables[WQTotal];
const double newton_update = dwells[0][WQTotal];
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
// 0.8 here is a experimental value, which remains to be optimized
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
// always be 1.0, more thoughts might be needed.
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
return relaxation_factor;
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
relaxationFactorFraction(const double old_value,
const double dx)
{
assert(old_value >= 0. && old_value <= 1.0);
double relaxation_factor = 1.;
// updated values without relaxation factor
const double possible_updated_value = old_value - dx;
// 0.95 is an experimental value remains to be optimized
if (possible_updated_value < 0.0) {
relaxation_factor = std::abs(old_value / dx) * 0.95;
} else if (possible_updated_value > 1.0) {
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
}
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
// remains to be one
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
return relaxation_factor;
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
calculateThpFromBhp(const WellState &well_state,
const std::vector<double>& rates,
const double bhp,
DeferredLogger& deferred_logger) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
// pick the density in the top layer
double thp = 0.0;
if (baseif_.isInjector()) {
const int table_id = baseif_.wellEcl().vfp_table_number();
const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
}
else if (baseif_.isProducer()) {
const int table_id = baseif_.wellEcl().vfp_table_number();
const double alq = baseif_.getALQ(well_state);
const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
}
return thp;
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = baseif_.numPerfs();
perf_pressure_diffs_.resize(nperf, 0.0);
auto z_above = baseif_.parallelWellInfo().communicateAboveValues(baseif_.refDepth(), baseif_.perfDepth());
for (int perf = 0; perf < nperf; ++perf) {
const double dz = baseif_.perfDepth()[perf] - z_above[perf];
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * baseif_.gravity();
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
baseif_.parallelWellInfo().partialSumPerfValues(beg, end);
}
template<class Scalar>
std::optional<double>
StandardWellGeneric<Scalar>::
computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
DeferredLogger& deferred_logger,
double alq_value) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = baseif_.getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
return baseif_.vfpProperties()->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary. Then the sign must be flipped
// since the VFP code expects that production flo values are
// negative.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
for (double& x : flo_samples) {
x = -x;
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample < -flo_bhp_limit) {
// We would have to go under the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 600.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::nullopt;
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::nullopt;
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::nullopt;
}
}
template<class Scalar>
std::optional<double>
StandardWellGeneric<Scalar>::
computeBhpAtThpLimitInj(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = baseif_.wellEcl().injectionControls(summary_state);
const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = baseif_.getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
assert(rates.size() == 3);
return baseif_.vfpProperties()->getInj()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample > flo_bhp_limit) {
// We would have to go over the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 800.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::nullopt;
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::nullopt;
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::nullopt;
}
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
checkConvergenceControlEq(const WellState& well_state,
ConvergenceReport& report,
DeferredLogger& deferred_logger,
const double max_residual_allowed) const
{
double control_tolerance = 0.;
using CR = ConvergenceReport;
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
const int well_index = baseif_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (baseif_.wellIsStopped()) {
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // use smaller tolerance for zero control?
}
else if (baseif_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::InjectorCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; //
break;
case Well::InjectorCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; //
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
else if (baseif_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
const double well_control_residual = std::abs(this->resWell_[0][Bhp_]);
const int dummy_component = -1;
if (std::isnan(well_control_residual)) {
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (well_control_residual > max_residual_allowed * 10.) {
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if ( well_control_residual > control_tolerance) {
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
checkConvergencePolyMW(const std::vector<double>& res,
ConvergenceReport& report,
const double maxResidualAllowed) const
{
if (baseif_.isInjector()) {
// checking the convergence of the perforation rates
const double wat_vel_tol = 1.e-8;
const int dummy_component = -1;
using CR = ConvergenceReport;
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const double wat_vel_residual = res[Bhp_ + 1 + perf];
if (std::isnan(wat_vel_residual)) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (wat_vel_residual > wat_vel_tol) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
// checking the convergence of the skin pressure
const double pskin_tol = 1000.; // 1000 pascal
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const double pskin_residual = res[Bhp_ + 1 + perf + baseif_.numPerfs()];
if (std::isnan(pskin_residual)) {
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (pskin_residual > maxResidualAllowed * 10.) {
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (pskin_residual > pskin_tol) {
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
}
#if HAVE_CUDA || HAVE_OPENCL
template<class Scalar>
void
StandardWellGeneric<Scalar>::
getNumBlocks(unsigned int& numBlocks) const
{
numBlocks = duneB_.nonzeroes();
}
#endif
template class StandardWellGeneric<double>;
}