mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-07 15:03:01 -06:00
1036 lines
46 KiB
C++
1036 lines
46 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2017 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|
|
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|
|
|
|
#include <opm/core/wells.h>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well2.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <array>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// The state of a set of wells, tailored for use by the fully
|
|
/// implicit blackoil simulator.
|
|
class WellStateFullyImplicitBlackoil
|
|
: public WellState
|
|
{
|
|
typedef WellState BaseType;
|
|
public:
|
|
typedef BaseType :: WellMapType WellMapType;
|
|
|
|
// TODO: same definition with WellInterface, eventually they should go to a common header file.
|
|
static const int Water = BlackoilPhases::Aqua;
|
|
static const int Oil = BlackoilPhases::Liquid;
|
|
static const int Gas = BlackoilPhases::Vapour;
|
|
|
|
using BaseType :: wellRates;
|
|
using BaseType :: bhp;
|
|
using BaseType :: perfPress;
|
|
using BaseType :: wellMap;
|
|
using BaseType :: numWells;
|
|
using BaseType :: numPhases;
|
|
|
|
/// Allocate and initialize if wells is non-null. Also tries
|
|
/// to give useful initial values to the bhp(), wellRates()
|
|
/// and perfPhaseRates() fields, depending on controls
|
|
void init(const Wells* wells,
|
|
const std::vector<double>& cellPressures,
|
|
const Schedule& schedule,
|
|
const std::vector<Well2>& wells_ecl,
|
|
const int report_step,
|
|
const WellStateFullyImplicitBlackoil* prevState,
|
|
const PhaseUsage& pu)
|
|
{
|
|
// call init on base class
|
|
BaseType :: init(wells, cellPressures);
|
|
|
|
// if there are no well, do nothing in init
|
|
if (wells == 0) {
|
|
return;
|
|
}
|
|
|
|
const int nw = wells->number_of_wells;
|
|
|
|
if( nw == 0 ) return ;
|
|
|
|
// Initialize perfphaserates_, which must be done here.
|
|
const int np = wells->number_of_phases;
|
|
const int nperf = wells->well_connpos[nw];
|
|
|
|
well_reservoir_rates_.resize(nw * np, 0.0);
|
|
well_dissolved_gas_rates_.resize(nw, 0.0);
|
|
well_vaporized_oil_rates_.resize(nw, 0.0);
|
|
|
|
// checking whether some effective well control happens
|
|
effective_events_occurred_.resize(nw, true);
|
|
|
|
// a hack to make the resize() function used in RESTART related work
|
|
if (!wells_ecl.empty() ) {
|
|
// At the moment, the following events are considered to be effective events
|
|
// more events might join as effective events
|
|
// PRODUCTION_UPDATE, INJECTION_UPDATE, WELL_STATUS_CHANGE
|
|
// 16 + 32 + 128
|
|
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
|
|
+ ScheduleEvents::PRODUCTION_UPDATE
|
|
+ ScheduleEvents::INJECTION_UPDATE;
|
|
|
|
for (int w = 0; w <nw; ++w) {
|
|
const int nw_wells_ecl = wells_ecl.size();
|
|
int index_well_ecl = 0;
|
|
const std::string well_name(wells->name[w]);
|
|
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
|
|
if (well_name == wells_ecl[index_well_ecl].name()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well_ecl == nw_wells_ecl) {
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
}
|
|
|
|
effective_events_occurred_[w] = (schedule.hasWellEvent(well_name, effective_events_mask, report_step) );
|
|
}
|
|
} // end of if (!well_ecl.empty() )
|
|
|
|
// Ensure that we start out with zero rates by default.
|
|
perfphaserates_.clear();
|
|
perfphaserates_.resize(nperf * np, 0.0);
|
|
|
|
// these are only used to monitor the injectivity
|
|
perf_water_throughput_.clear();
|
|
perf_water_throughput_.resize(nperf, 0.0);
|
|
perf_water_velocity_.clear();
|
|
perf_water_velocity_.resize(nperf, 0.0);
|
|
perf_skin_pressure_.clear();
|
|
perf_skin_pressure_.resize(nperf, 0.0);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
|
|
const WellControls* ctrl = wells->ctrls[w];
|
|
|
|
if (well_controls_well_is_stopped(ctrl)) {
|
|
// Shut well: perfphaserates_ are all zero.
|
|
} else {
|
|
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
|
|
// Open well: Initialize perfphaserates_ to well
|
|
// rates divided by the number of perforations.
|
|
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
|
|
}
|
|
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
|
|
}
|
|
}
|
|
}
|
|
|
|
current_controls_.resize(nw);
|
|
// The controls set in the Wells (specified in the DECK) are treated as default initial value
|
|
for (int w = 0; w < nw; ++w) {
|
|
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
|
|
}
|
|
perfRateSolvent_.clear();
|
|
perfRateSolvent_.resize(nperf, 0.0);
|
|
productivity_index_.resize(nw * np, 0.0);
|
|
well_potentials_.resize(nw * np, 0.0);
|
|
|
|
// intialize wells that have been there before
|
|
// order may change so the mapping is based on the well name
|
|
if(prevState && !prevState->wellMap().empty()) {
|
|
typedef typename WellMapType :: const_iterator const_iterator;
|
|
const_iterator end = prevState->wellMap().end();
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string name( wells->name[ w ] );
|
|
const_iterator it = prevState->wellMap().find( name );
|
|
if( it != end )
|
|
{
|
|
const int oldIndex = (*it).second[ 0 ];
|
|
const int newIndex = w;
|
|
|
|
// bhp
|
|
bhp()[ newIndex ] = prevState->bhp()[ oldIndex ];
|
|
|
|
// thp
|
|
thp()[ newIndex ] = prevState->thp()[ oldIndex ];
|
|
|
|
// if there is no effective control event happens to the well, we use the current_controls_ from prevState
|
|
// otherwise, we use the control specified in the deck
|
|
if (!effective_events_occurred_[w]) {
|
|
current_controls_[ newIndex ] = prevState->currentControls()[ oldIndex ];
|
|
// also change the one in the WellControls
|
|
well_controls_set_current(wells->ctrls[w], current_controls_[ newIndex ]);
|
|
}
|
|
|
|
// wellrates
|
|
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
|
{
|
|
wellRates()[ idx ] = prevState->wellRates()[ oldidx ];
|
|
}
|
|
|
|
// perfPhaseRates
|
|
const int oldPerf_idx_beg = (*it).second[ 1 ];
|
|
const int num_perf_old_well = (*it).second[ 2 ];
|
|
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
|
|
// copy perforation rates when the number of perforations is equal,
|
|
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int old_perf_phase_idx = oldPerf_idx_beg *np;
|
|
for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np;
|
|
perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx )
|
|
{
|
|
perfPhaseRates()[ perf_phase_idx ] = prevState->perfPhaseRates()[ old_perf_phase_idx ];
|
|
}
|
|
} else {
|
|
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
|
|
}
|
|
}
|
|
}
|
|
// perfPressures
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = wells->well_connpos[ newIndex ];
|
|
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfPress()[ perf ] = prevState->perfPress()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
// perfSolventRates
|
|
if (pu.has_solvent) {
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = wells->well_connpos[ newIndex ];
|
|
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
}
|
|
|
|
// polymer injectivity related
|
|
// here we did not consider the case that we close some perforation during the running
|
|
// and also, wells can be shut and re-opened
|
|
if (pu.has_polymermw) {
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = wells->well_connpos[ newIndex ];
|
|
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
|
|
{
|
|
perf_water_throughput_[ perf ] = prevState->perfThroughput()[ oldPerf_idx ];
|
|
perf_skin_pressure_[ perf ] = prevState->perfSkinPressure()[ oldPerf_idx ];
|
|
perf_water_velocity_[ perf ] = prevState->perfWaterVelocity()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// If in the new step, there is no THP related target/limit anymore, its thp value should be
|
|
// set to zero.
|
|
const WellControls* ctrl = wells->ctrls[w];
|
|
const int nwc = well_controls_get_num(ctrl);
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
|
|
break;
|
|
}
|
|
}
|
|
// not finding any thp related control/limits
|
|
if (ctrl_index == nwc) {
|
|
thp()[w] = 0.;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// we need to create a trival segment related values to avoid there will be some
|
|
// multi-segment wells added later.
|
|
nseg_ = nw;
|
|
top_segment_index_.resize(nw);
|
|
seg_number_.resize(nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
top_segment_index_[w] = w;
|
|
seg_number_[w] = 1; // Top segment is segment #1
|
|
}
|
|
segpress_ = bhp();
|
|
segrates_ = wellRates();
|
|
}
|
|
}
|
|
|
|
|
|
void resize(const Wells* wells, const std::vector<Well2>& wells_ecl, const Schedule& schedule,
|
|
const bool handle_ms_well, const size_t numCells, const PhaseUsage& pu)
|
|
{
|
|
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
|
|
init(wells, tmp, schedule, wells_ecl, 0, nullptr, pu);
|
|
|
|
if (handle_ms_well) {
|
|
initWellStateMSWell(wells, wells_ecl, pu, nullptr);
|
|
}
|
|
}
|
|
|
|
/// Allocate and initialize if wells is non-null. Also tries
|
|
/// to give useful initial values to the bhp(), wellRates()
|
|
/// and perfPhaseRates() fields, depending on controls.
|
|
///
|
|
/// this method is only for flow_legacy!
|
|
template <class PrevWellState>
|
|
void initLegacy(const Wells* wells, const std::vector<double>& cellPressures , const PrevWellState& prevState, const PhaseUsage& pu)
|
|
{
|
|
// call init on base class
|
|
BaseType :: init(wells, cellPressures);
|
|
|
|
// if there are no well, do nothing in init
|
|
if (wells == 0) {
|
|
return;
|
|
}
|
|
|
|
const int nw = wells->number_of_wells;
|
|
|
|
if( nw == 0 ) return ;
|
|
|
|
// Initialize perfphaserates_, which must be done here.
|
|
const int np = wells->number_of_phases;
|
|
const int nperf = wells->well_connpos[nw];
|
|
|
|
well_reservoir_rates_.resize(nw * np, 0.0);
|
|
well_dissolved_gas_rates_.resize(nw, 0.0);
|
|
well_vaporized_oil_rates_.resize(nw, 0.0);
|
|
|
|
productivity_index_.resize(nw * np, 0.0);
|
|
well_potentials_.resize(nw*np, 0.0);
|
|
|
|
// Ensure that we start out with zero rates by default.
|
|
perfphaserates_.clear();
|
|
perfphaserates_.resize(nperf * np, 0.0);
|
|
for (int w = 0; w < nw; ++w) {
|
|
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
|
|
const WellControls* ctrl = wells->ctrls[w];
|
|
|
|
if (well_controls_well_is_stopped(ctrl)) {
|
|
// Shut well: perfphaserates_ are all zero.
|
|
} else {
|
|
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
|
|
// Open well: Initialize perfphaserates_ to well
|
|
// rates divided by the number of perforations.
|
|
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
|
|
}
|
|
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize current_controls_.
|
|
// The controls set in the Wells object are treated as defaults,
|
|
// and also used for initial values.
|
|
current_controls_.resize(nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
|
|
}
|
|
|
|
perfRateSolvent_.clear();
|
|
perfRateSolvent_.resize(nperf, 0.0);
|
|
|
|
// intialize wells that have been there before
|
|
// order may change so the mapping is based on the well name
|
|
if( ! prevState.wellMap().empty() )
|
|
{
|
|
typedef typename WellMapType :: const_iterator const_iterator;
|
|
const_iterator end = prevState.wellMap().end();
|
|
for (int w = 0; w < nw; ++w) {
|
|
std::string name( wells->name[ w ] );
|
|
const_iterator it = prevState.wellMap().find( name );
|
|
if( it != end )
|
|
{
|
|
const int oldIndex = (*it).second[ 0 ];
|
|
const int newIndex = w;
|
|
|
|
// bhp
|
|
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
|
|
|
|
// thp
|
|
thp()[ newIndex ] = prevState.thp()[ oldIndex ];
|
|
|
|
// wellrates
|
|
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
|
{
|
|
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
|
|
}
|
|
|
|
// perfPhaseRates
|
|
const int oldPerf_idx_beg = (*it).second[ 1 ];
|
|
const int num_perf_old_well = (*it).second[ 2 ];
|
|
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
|
|
// copy perforation rates when the number of perforations is equal,
|
|
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int old_perf_phase_idx = oldPerf_idx_beg *np;
|
|
for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np;
|
|
perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx )
|
|
{
|
|
perfPhaseRates()[ perf_phase_idx ] = prevState.perfPhaseRates()[ old_perf_phase_idx ];
|
|
}
|
|
} else {
|
|
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
|
|
}
|
|
}
|
|
}
|
|
// perfPressures
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = wells->well_connpos[ newIndex ];
|
|
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
// perfSolventRates
|
|
if (pu.has_solvent) {
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = wells->well_connpos[ newIndex ];
|
|
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfRateSolvent()[ perf ] = prevState.perfRateSolvent()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// If in the new step, there is no THP related target/limit anymore, its thp value should be
|
|
// set to zero.
|
|
const WellControls* ctrl = wells->ctrls[w];
|
|
const int nwc = well_controls_get_num(ctrl);
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
|
|
break;
|
|
}
|
|
}
|
|
// not finding any thp related control/limits
|
|
if (ctrl_index == nwc) {
|
|
thp()[w] = 0.;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// we need to create a trival segment related values to avoid there will be some
|
|
// multi-segment wells added later.
|
|
nseg_ = nw;
|
|
top_segment_index_.resize(nw);
|
|
seg_number_.resize(nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
top_segment_index_[w] = w;
|
|
seg_number_[w] = 1; // Top segment is segment #1
|
|
}
|
|
segpress_ = bhp();
|
|
segrates_ = wellRates();
|
|
}
|
|
}
|
|
|
|
// this method is only for flow_legacy!
|
|
template <class State, class PrevWellState>
|
|
void initLegacy(const Wells* wells, const State& state, const PrevWellState& prevState, const PhaseUsage& pu)
|
|
{
|
|
initLegacy(wells, state.pressure(), prevState, pu);
|
|
}
|
|
|
|
// this method is only for flow_legacy!
|
|
template <class State>
|
|
void resizeLegacy(const Wells* wells, const State& state, const PhaseUsage& pu)
|
|
{
|
|
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
|
|
initLegacy(wells, state, dummy_state, pu) ;
|
|
}
|
|
|
|
/// One rate per phase and well connection.
|
|
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
|
|
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
|
|
|
|
/// One current control per well.
|
|
std::vector<int>& currentControls() { return current_controls_; }
|
|
const std::vector<int>& currentControls() const { return current_controls_; }
|
|
|
|
data::Wells report(const PhaseUsage &pu, const int* globalCellIdxMap) const override
|
|
{
|
|
data::Wells res = WellState::report(pu, globalCellIdxMap);
|
|
|
|
const int nw = this->numWells();
|
|
if( nw == 0 ) return res;
|
|
const int np = pu.num_phases;
|
|
|
|
|
|
using rt = data::Rates::opt;
|
|
std::vector< rt > phs( np );
|
|
if( pu.phase_used[Water] ) {
|
|
phs.at( pu.phase_pos[Water] ) = rt::wat;
|
|
}
|
|
|
|
if( pu.phase_used[Oil] ) {
|
|
phs.at( pu.phase_pos[Oil] ) = rt::oil;
|
|
}
|
|
|
|
if( pu.phase_used[Gas] ) {
|
|
phs.at( pu.phase_pos[Gas] ) = rt::gas;
|
|
}
|
|
|
|
if (pu.has_solvent) {
|
|
// add solvent component
|
|
for( int w = 0; w < nw; ++w ) {
|
|
res.at( wells_->name[ w ]).rates.set( rt::solvent, solventWellRate(w) );
|
|
}
|
|
}
|
|
|
|
/* this is a reference or example on **how** to convert from
|
|
* WellState to something understood by opm-output. it is intended
|
|
* to be properly implemented and maintained as a part of
|
|
* simulators, as it relies on simulator internals, details and
|
|
* representations.
|
|
*/
|
|
|
|
for( const auto& wt : this->wellMap() ) {
|
|
const auto w = wt.second[ 0 ];
|
|
auto& well = res.at( wt.first );
|
|
well.control = this->currentControls()[ w ];
|
|
|
|
const int well_rate_index = w * pu.num_phases;
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::productivity_index_water, this->productivity_index_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::productivity_index_oil, this->productivity_index_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::productivity_index_gas, this->productivity_index_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::well_potential_water, this->well_potentials_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::well_potential_oil, this->well_potentials_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::well_potential_gas, this->well_potentials_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] );
|
|
well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] );
|
|
|
|
int local_comp_index = 0;
|
|
for( auto& comp : well.connections) {
|
|
const auto rates = this->perfPhaseRates().begin()
|
|
+ (np * wt.second[ 1 ])
|
|
+ (np * local_comp_index);
|
|
++local_comp_index;
|
|
|
|
for( int i = 0; i < np; ++i ) {
|
|
comp.rates.set( phs[ i ], *(rates + i) );
|
|
}
|
|
}
|
|
assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]);
|
|
|
|
const auto nseg = this->numSegments(w);
|
|
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
|
|
const auto seg_no = this->segmentNumber(w, seg_ix);
|
|
well.segments[seg_no] =
|
|
this->reportSegmentResults(pu, w, seg_ix, seg_no);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/// init the MS well related.
|
|
void initWellStateMSWell(const Wells* wells, const std::vector<Well2>& wells_ecl,
|
|
const PhaseUsage& pu, const WellStateFullyImplicitBlackoil* prev_well_state)
|
|
{
|
|
// still using the order in wells
|
|
const int nw = wells->number_of_wells;
|
|
if (nw == 0) {
|
|
return;
|
|
}
|
|
|
|
top_segment_index_.clear();
|
|
top_segment_index_.reserve(nw);
|
|
segpress_.clear();
|
|
segpress_.reserve(nw);
|
|
segrates_.clear();
|
|
segrates_.reserve(nw * numPhases());
|
|
seg_number_.clear();
|
|
|
|
nseg_ = 0;
|
|
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
|
|
// what we do here, is to set the segment rates and perforation rates
|
|
for (int w = 0; w < nw; ++w) {
|
|
const int nw_wells_ecl = wells_ecl.size();
|
|
int index_well_ecl = 0;
|
|
const std::string well_name(wells->name[w]);
|
|
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
|
|
if (well_name == wells_ecl[index_well_ecl].name()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well_ecl == nw_wells_ecl) {
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
}
|
|
|
|
const auto& well_ecl = wells_ecl[index_well_ecl];
|
|
top_segment_index_.push_back(nseg_);
|
|
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
|
|
nseg_ += 1;
|
|
seg_number_.push_back(1); // Assign single segment (top) as number 1.
|
|
segpress_.push_back(bhp()[w]);
|
|
const int np = numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
segrates_.push_back(wellRates()[np * w + p]);
|
|
}
|
|
} else { // it is a multi-segment well
|
|
const WellSegments& segment_set = well_ecl.getSegments();
|
|
// assuming the order of the perforations in well_ecl is the same with Wells
|
|
const WellConnections& completion_set = well_ecl.getConnections();
|
|
// number of segment for this single well
|
|
const int well_nseg = segment_set.size();
|
|
// const int nperf = completion_set.size();
|
|
int n_activeperf = 0;
|
|
nseg_ += well_nseg;
|
|
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
|
|
this->seg_number_.push_back(segment_set[segID].segmentNumber());
|
|
}
|
|
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
|
|
// that is why I think we should use a well model to initialize the WellState here
|
|
std::vector<std::vector<int>> segment_perforations(well_nseg);
|
|
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
|
|
const Connection& connection = completion_set.get(perf);
|
|
if (connection.state() == WellCompletion::OPEN) {
|
|
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
|
|
segment_perforations[segment_index].push_back(n_activeperf);
|
|
n_activeperf++;
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<int>> segment_inlets(well_nseg);
|
|
for (int seg = 0; seg < well_nseg; ++seg) {
|
|
const Segment& segment = segment_set[seg];
|
|
const int segment_number = segment.segmentNumber();
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) {
|
|
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
|
|
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
|
|
segment_inlets[outlet_segment_index].push_back(segment_index);
|
|
}
|
|
}
|
|
|
|
|
|
// for the segrates_, now it becomes a recursive solution procedure.
|
|
{
|
|
const int np = numPhases();
|
|
const int start_perf = wells->well_connpos[w];
|
|
const int start_perf_next_well = wells->well_connpos[w + 1];
|
|
|
|
// make sure the information from wells_ecl consistent with wells
|
|
assert(n_activeperf == (start_perf_next_well - start_perf));
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
|
|
// it will probably benefit the standard well too, while it needs to be justified
|
|
// TODO: to see if this strategy can benefit StandardWell too
|
|
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
|
|
// maybe the best way is to initialize the fractions first then get the rates
|
|
for (int perf = 0; perf < n_activeperf; perf++) {
|
|
const int perf_pos = start_perf + perf;
|
|
perfPhaseRates()[np * perf_pos + gaspos] *= 100.;
|
|
}
|
|
}
|
|
|
|
const std::vector<double> perforation_rates(perfPhaseRates().begin() + np * start_perf,
|
|
perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well
|
|
std::vector<double> segment_rates;
|
|
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
|
|
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(segrates_));
|
|
}
|
|
|
|
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
|
|
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
|
|
// which requres the ordering is successful
|
|
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
|
|
// improved during the solveWellEq process
|
|
{
|
|
// top segment is always the first one, and its pressure is the well bhp
|
|
segpress_.push_back(bhp()[w]);
|
|
const int top_segment = top_segment_index_[w];
|
|
const int start_perf = wells->well_connpos[w];
|
|
for (int seg = 1; seg < well_nseg; ++seg) {
|
|
if ( !segment_perforations[seg].empty() ) {
|
|
const int first_perf = segment_perforations[seg][0];
|
|
segpress_.push_back(perfPress()[start_perf + first_perf]);
|
|
} else {
|
|
// segpress_.push_back(bhp); // may not be a good decision
|
|
// using the outlet segment pressure // it needs the ordering is correct
|
|
const int outlet_seg = segment_set[seg].outletSegment();
|
|
segpress_.push_back(segpress_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(int(segpress_.size()) == nseg_);
|
|
assert(int(segrates_.size()) == nseg_ * numPhases() );
|
|
|
|
if (prev_well_state && !prev_well_state->wellMap().empty()) {
|
|
// copying MS well related
|
|
const auto& end = prev_well_state->wellMap().end();
|
|
const int np = numPhases();
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string name( wells->name[w] );
|
|
const auto& it = prev_well_state->wellMap().find( name );
|
|
|
|
if (it != end) { // the well is found in the prev_well_state
|
|
// TODO: the well with same name can change a lot, like they might not have same number of segments
|
|
// we need to handle that later.
|
|
// for now, we just copy them.
|
|
const int old_index_well = (*it).second[0];
|
|
const int new_index_well = w;
|
|
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
|
|
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
|
|
int number_of_segment = 0;
|
|
// if it is the last well in list
|
|
if (new_index_well == int(top_segment_index_.size()) - 1) {
|
|
number_of_segment = nseg_ - new_top_segmnet_index;
|
|
} else {
|
|
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
|
|
}
|
|
|
|
for (int i = 0; i < number_of_segment * np; ++i) {
|
|
segrates_[new_top_segmnet_index * np + i] = prev_well_state->segRates()[old_top_segment_index * np + i];
|
|
}
|
|
|
|
for (int i = 0; i < number_of_segment; ++i) {
|
|
segpress_[new_top_segmnet_index + i] = prev_well_state->segPress()[old_top_segment_index + i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
|
|
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates)
|
|
{
|
|
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
|
|
// the first segment is always the top segment, its rates should be equal to the well rates.
|
|
assert(segment_inlets.size() == segment_perforations.size());
|
|
const int well_nseg = segment_inlets.size();
|
|
if (segment == 0) { // beginning the calculation
|
|
segment_rates.resize(np * well_nseg, 0.0);
|
|
}
|
|
// contributions from the perforations belong to this segment
|
|
for (const int& perf : segment_perforations[segment]) {
|
|
for (int p = 0; p < np; ++p) {
|
|
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
|
|
}
|
|
}
|
|
for (const int& inlet_seg : segment_inlets[segment]) {
|
|
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
|
|
for (int p = 0; p < np; ++p) {
|
|
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool effectiveEventsOccurred(const int w) const {
|
|
return effective_events_occurred_[w];
|
|
}
|
|
|
|
|
|
void setEffectiveEventsOccurred(const int w, const bool effective_events_occurred) {
|
|
effective_events_occurred_[w] = effective_events_occurred;
|
|
}
|
|
|
|
|
|
/// One rate pr well connection.
|
|
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
|
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
|
|
|
/// One rate pr well
|
|
double solventWellRate(const int w) const {
|
|
double solvent_well_rate = 0.0;
|
|
for (int perf = wells_->well_connpos[w]; perf < wells_->well_connpos[w+1]; ++perf ) {
|
|
solvent_well_rate += perfRateSolvent_[perf];
|
|
}
|
|
return solvent_well_rate;
|
|
}
|
|
|
|
std::vector<double>& wellReservoirRates()
|
|
{
|
|
return well_reservoir_rates_;
|
|
}
|
|
|
|
std::vector<double>& wellDissolvedGasRates()
|
|
{
|
|
return well_dissolved_gas_rates_;
|
|
}
|
|
|
|
std::vector<double>& wellVaporizedOilRates()
|
|
{
|
|
return well_vaporized_oil_rates_;
|
|
}
|
|
|
|
const std::vector<double>& segRates() const
|
|
{
|
|
return segrates_;
|
|
}
|
|
|
|
std::vector<double>& segRates()
|
|
{
|
|
return segrates_;
|
|
}
|
|
|
|
const std::vector<double>& segPress() const
|
|
{
|
|
return segpress_;
|
|
}
|
|
|
|
std::vector<double>& segPress()
|
|
{
|
|
return segpress_;
|
|
}
|
|
|
|
int numSegment() const
|
|
{
|
|
return nseg_;
|
|
}
|
|
|
|
int topSegmentIndex(const int w) const
|
|
{
|
|
assert(w < int(top_segment_index_.size()) );
|
|
|
|
return top_segment_index_[w];
|
|
}
|
|
|
|
std::vector<double>& productivityIndex() {
|
|
return productivity_index_;
|
|
}
|
|
|
|
const std::vector<double>& productivityIndex() const {
|
|
return productivity_index_;
|
|
}
|
|
|
|
std::vector<double>& wellPotentials() {
|
|
return well_potentials_;
|
|
}
|
|
|
|
const std::vector<double>& wellPotentials() const {
|
|
return well_potentials_;
|
|
}
|
|
|
|
std::vector<double>& perfThroughput() {
|
|
return perf_water_throughput_;
|
|
}
|
|
|
|
const std::vector<double>& perfThroughput() const {
|
|
return perf_water_throughput_;
|
|
}
|
|
|
|
std::vector<double>& perfSkinPressure() {
|
|
return perf_skin_pressure_;
|
|
}
|
|
|
|
const std::vector<double>& perfSkinPressure() const {
|
|
return perf_skin_pressure_;
|
|
}
|
|
|
|
std::vector<double>& perfWaterVelocity() {
|
|
return perf_water_velocity_;
|
|
}
|
|
|
|
const std::vector<double>& perfWaterVelocity() const {
|
|
return perf_water_velocity_;
|
|
}
|
|
|
|
private:
|
|
std::vector<double> perfphaserates_;
|
|
std::vector<int> current_controls_;
|
|
std::vector<double> perfRateSolvent_;
|
|
|
|
// it is the throughput of water flow through the perforations
|
|
// it is used as a measure of formation damage around well-bore due to particle deposition
|
|
// it will only be used for injectors to check the injectivity
|
|
std::vector<double> perf_water_throughput_;
|
|
|
|
// skin pressure of peforation
|
|
// it will only be used for injectors to check the injectivity
|
|
std::vector<double> perf_skin_pressure_;
|
|
|
|
// it will only be used for injectors to check the injectivity
|
|
// water velocity of perforation
|
|
std::vector<double> perf_water_velocity_;
|
|
|
|
// phase rates under reservoir condition for wells
|
|
// or voidage phase rates
|
|
std::vector<double> well_reservoir_rates_;
|
|
|
|
// dissolved gas rates or solution gas production rates
|
|
// should be zero for injection wells
|
|
std::vector<double> well_dissolved_gas_rates_;
|
|
|
|
// vaporized oil rates or solution oil producation rates
|
|
// should be zero for injection wells
|
|
std::vector<double> well_vaporized_oil_rates_;
|
|
|
|
// some events happens to the well, like this well is a new well
|
|
// or new well control keywords happens
|
|
// \Note: for now, only WCON* keywords, and well status change is considered
|
|
std::vector<bool> effective_events_occurred_;
|
|
|
|
// MS well related
|
|
// for StandardWell, the number of segments will be one
|
|
std::vector<double> segrates_;
|
|
std::vector<double> segpress_;
|
|
// the index of the top segments, which is used to locate the
|
|
// multisegment well related information in WellState
|
|
std::vector<int> top_segment_index_;
|
|
int nseg_; // total number of the segments
|
|
|
|
// Productivity Index
|
|
std::vector<double> productivity_index_;
|
|
|
|
// Well potentials
|
|
std::vector<double> well_potentials_;
|
|
|
|
/// Map segment index to segment number, mostly for MS wells.
|
|
///
|
|
/// Segment number (one-based) of j-th segment in i-th well is
|
|
/// \code
|
|
/// const auto top = topSegmentIndex(i);
|
|
/// const auto seg_No = seg_number_[top + j];
|
|
/// \end
|
|
std::vector<int> seg_number_;
|
|
|
|
::Opm::data::Segment
|
|
reportSegmentResults(const PhaseUsage& pu,
|
|
const int well_id,
|
|
const int seg_ix,
|
|
const int seg_no) const
|
|
{
|
|
auto seg_res = ::Opm::data::Segment{};
|
|
|
|
const auto seg_dof =
|
|
this->topSegmentIndex(well_id) + seg_ix;
|
|
|
|
const auto* rate =
|
|
&this->segRates()[seg_dof * this->numPhases()];
|
|
|
|
seg_res.pressure = this->segPress()[seg_dof];
|
|
|
|
if (pu.phase_used[Water]) {
|
|
seg_res.rates.set(data::Rates::opt::wat,
|
|
rate[pu.phase_pos[Water]]);
|
|
}
|
|
|
|
if (pu.phase_used[Oil]) {
|
|
seg_res.rates.set(data::Rates::opt::oil,
|
|
rate[pu.phase_pos[Oil]]);
|
|
}
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
seg_res.rates.set(data::Rates::opt::gas,
|
|
rate[pu.phase_pos[Gas]]);
|
|
}
|
|
|
|
seg_res.segNumber = seg_no;
|
|
|
|
return seg_res;
|
|
}
|
|
|
|
int numSegments(const int well_id) const
|
|
{
|
|
const auto topseg = this->topSegmentIndex(well_id);
|
|
|
|
return (well_id + 1 == this->numWells()) // Last well?
|
|
? (this->numSegment() - topseg)
|
|
: (this->topSegmentIndex(well_id + 1) - topseg);
|
|
}
|
|
|
|
int segmentNumber(const int well_id, const int seg_id) const
|
|
{
|
|
const auto top_offset = this->topSegmentIndex(well_id);
|
|
|
|
return this->seg_number_[top_offset + seg_id];
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|