opm-simulators/applications/ebos/ecltransmissibility.hh
Andreas Lauser a63a4f2bdc make most indices unsigned
(instead of using 'int'.) This triggered quite a few compiler warnings
which are also dealt-with by this patch.
2015-11-18 18:09:56 +01:00

381 lines
14 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::EclTransmissibility
*/
#ifndef EWOMS_ECL_TRANSMISSIBILITY_HH
#define EWOMS_ECL_TRANSMISSIBILITY_HH
#include "eclgridmanager.hh"
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <array>
#include <vector>
#include <unordered_map>
namespace Ewoms {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the transmissibilites for grid faces according to the
* Eclipse Technical Description.
*/
template <class TypeTag>
class EclTransmissibility
{
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GridView::Intersection Intersection;
// Grid and world dimension
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
EclTransmissibility(const Simulator& simulator)
: simulator_(simulator)
{}
/*!
* \brief Actually compute the transmissibilty over a face as a pre-compute step.
*
* This code actually uses the direction specific "centroids" of
* each element. These "centroids" are _not_ the identical
* barycenter of the element, but the middle of the centers of the
* faces of the logical Cartesian cells, i.e., the centers of the
* faces of the reference elements. We do things this way because
* the barycenter of the element can be located outside of the
* element for sufficiently "ugly" (i.e., thin and "non-flat")
* elements which in turn leads to quite wrong
* permeabilities. This approach is probably not always correct
* either but at least it seems to be much better.
*/
void finishInit()
{
const auto& elementMapper = simulator_.model().elementMapper();
const auto& gridView = simulator_.gridView();
const auto& problem = simulator_.problem();
unsigned numElements = elementMapper.size();
// this code assumes that the DOFs are the elements. (i.e., an
// ECFV spatial discretization with TPFA). if you try to use
// it with something else, you're currently out of luck,
// sorry!
assert(simulator_.model().numGridDof() == numElements);
// calculate the axis specific centroids of all elements
std::array<std::vector<DimVector>, dimWorld> axisCentroids;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[dimIdx].resize(numElements);
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned elemIdx = elementMapper.index(elem);
#else
unsigned elemIdx = elementMapper.map(elem);
#endif
// get the geometry of the current element
const auto& geom = elem.geometry();
// compute the axis specific "centroids" used for the
// transmissibilities
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
DimVector x0Local(0.5);
DimVector x1Local(0.5);
x0Local[dimIdx] = 0.0;
x1Local[dimIdx] = 1.0;
DimVector x = geom.global(x0Local);
x += geom.global(x1Local);
x /= 2;
axisCentroids[dimIdx][elemIdx] = x;
}
}
const auto& gridManager = simulator_.gridManager();
Opm::EclipseStateConstPtr eclState = gridManager.eclState();
auto multipliers = eclState->getTransMult();
const std::vector<double>& multx =
eclState->getDoubleGridProperty("MULTX")->getData();
const std::vector<double>& multy =
eclState->getDoubleGridProperty("MULTY")->getData();
const std::vector<double>& multz =
eclState->getDoubleGridProperty("MULTZ")->getData();
const std::vector<double>& multxMinus =
eclState->getDoubleGridProperty("MULTX-")->getData();
const std::vector<double>& multyMinus =
eclState->getDoubleGridProperty("MULTY-")->getData();
const std::vector<double>& multzMinus =
eclState->getDoubleGridProperty("MULTZ-")->getData();
const std::vector<double>& ntg =
eclState->getDoubleGridProperty("NTG")->getData();
// reserving some space in the hashmap upfront saves quite a bit of time because
// resizes are costly for hashmaps and there would be quite a few of them if we
// would not have a rough idea of how large the final map will be (the rough idea
// is a conforming Cartesian grid). unfortunately, this method is not available
// in GCC 4.4. (but I cannot say for sure when it became available so I play safe
// and limit it to GCC >= 4.8)
#if defined __clang__ || (__GNUC__ > 4 && __GNUC_MINOR__ >= 8)
trans_.reserve(numElements*3*1.05);
#endif
// compute the transmissibilities for all intersections
elemIt = gridView.template begin</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// ignore boundary intersections for now (TODO?)
if (intersection.boundary())
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned insideElemIdx = elementMapper.index(inside);
unsigned outsideElemIdx = elementMapper.index(outside);
#else
unsigned insideElemIdx = elementMapper.map(*inside);
unsigned outsideElemIdx = elementMapper.map(*outside);
#endif
// we only need to calculate a face's transmissibility
// once...
if (insideElemIdx > outsideElemIdx)
continue;
unsigned cartesianElemIdxInside = gridManager.cartesianIndex(insideElemIdx);
unsigned cartesianElemIdxOutside = gridManager.cartesianIndex(outsideElemIdx);
// local indices of the faces of the inside and
// outside elements which contain the intersection
unsigned insideFaceIdx = intersection.indexInInside();
unsigned outsideFaceIdx = intersection.indexInOutside();
Scalar halfTrans1;
Scalar halfTrans2;
computeHalfTrans_(halfTrans1,
intersection,
insideFaceIdx,
distanceVector_(intersection,
intersection.indexInInside(),
insideElemIdx,
axisCentroids),
problem.intrinsicPermeability(insideElemIdx));
computeHalfTrans_(halfTrans2,
intersection,
outsideFaceIdx,
distanceVector_(intersection,
intersection.indexInOutside(),
outsideElemIdx,
axisCentroids),
problem.intrinsicPermeability(outsideElemIdx));
applyNtg_(halfTrans1, insideFaceIdx, insideElemIdx, ntg);
applyNtg_(halfTrans2, outsideFaceIdx, outsideElemIdx, ntg);
// convert half transmissibilities to full face
// transmissibilities using the harmonic mean
Scalar trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2);
// apply the full face transmissibility multipliers
// for the inside ...
applyMultipliers_(trans, insideFaceIdx, insideElemIdx,
multx, multxMinus,
multy, multyMinus,
multz, multzMinus);
// ... and outside elements
applyMultipliers_(trans, outsideFaceIdx, outsideElemIdx,
multx, multxMinus,
multy, multyMinus,
multz, multzMinus);
// apply the region multipliers (cf. the MULTREGT keyword)
Opm::FaceDir::DirEnum faceDir;
switch (insideFaceIdx) {
case 0:
case 1:
faceDir = Opm::FaceDir::XPlus;
break;
case 2:
case 3:
faceDir = Opm::FaceDir::YPlus;
break;
case 4:
case 5:
faceDir = Opm::FaceDir::ZPlus;
break;
default:
OPM_THROW(std::logic_error, "Could not determine a face direction");
}
trans *= multipliers->getRegionMultiplier(cartesianElemIdxInside,
cartesianElemIdxOutside,
faceDir);
trans_[isId_(insideElemIdx, outsideElemIdx)] = trans;
}
}
}
Scalar transmissibility(unsigned elemIdx1, unsigned elemIdx2) const
{ return trans_.at(isId_(elemIdx1, elemIdx2)); }
private:
std::uint64_t isId_(unsigned elemIdx1, unsigned elemIdx2) const
{
static const unsigned elemIdxShift = 32; // bits
unsigned elemAIdx = std::min(elemIdx1, elemIdx2);
std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2);
return (elemBIdx<<elemIdxShift) + elemAIdx;
}
void computeHalfTrans_(Scalar& halfTrans,
const Intersection& is,
unsigned faceIdx, // in the reference element that contains the intersection
const DimVector& distance,
const DimMatrix& perm) const
{
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
halfTrans = perm[dimIdx][dimIdx];
halfTrans *= is.geometry().volume();
const auto &normal = is.centerUnitOuterNormal();
Scalar val = 0;
for (unsigned i = 0; i < normal.size(); ++i)
val += is.centerUnitOuterNormal()[i]*distance[i];
halfTrans *= std::abs<Scalar>(val);
halfTrans /= distance*distance;
}
DimVector distanceVector_(const Intersection& is,
unsigned faceIdx, // in the reference element that contains the intersection
unsigned elemIdx,
const std::array<std::vector<DimVector>, dimWorld>& axisCentroids) const
{
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
DimVector x = is.geometry().center();
x -= axisCentroids[dimIdx][elemIdx];
return x;
}
template <class MultScalar>
void applyMultipliers_(Scalar &trans, unsigned faceIdx, unsigned elemIdx,
const std::vector<MultScalar>& multx,
const std::vector<MultScalar>& multxMinus,
const std::vector<MultScalar>& multy,
const std::vector<MultScalar>& multyMinus,
const std::vector<MultScalar>& multz,
const std::vector<MultScalar>& multzMinus) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= multxMinus[elemIdx];
break;
case 1: // right
trans *= multx[elemIdx];
break;
case 2: // front
trans *= multyMinus[elemIdx];
break;
case 3: // back
trans *= multy[elemIdx];
break;
case 4: // bottom
trans *= multzMinus[elemIdx];
break;
case 5: // top
trans *= multz[elemIdx];
break;
}
}
template <class NtgScalar>
void applyNtg_(Scalar &trans, unsigned faceIdx, unsigned elemIdx,
const std::vector<NtgScalar>& ntg) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= ntg[elemIdx];
break;
case 1: // right
trans *= ntg[elemIdx];
break;
case 2: // front
trans *= ntg[elemIdx];
break;
case 3: // back
trans *= ntg[elemIdx];
break;
// NTG does not apply to top and bottom faces
}
}
const Simulator& simulator_;
std::unordered_map<std::uint64_t, Scalar> trans_;
};
} // namespace Ewoms
#endif