opm-simulators/opm/simulators/linalg/bda/Reorder.cpp

387 lines
15 KiB
C++

/*
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/linalg/bda/Reorder.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <algorithm>
#include <array>
#include <functional>
#include <random>
#include <sstream>
#include <vector>
namespace {
std::mt19937 make_urng()
{
std::random_device rd;
std::array<unsigned int, std::mt19937::state_size> seed_data{};
std::generate_n(seed_data.begin(), seed_data.size(), std::ref(rd));
std::seed_seq seq(seed_data.begin(), seed_data.end());
return std::mt19937{ seq };
}
}
namespace Opm
{
namespace Accelerator
{
/* Give every node in the matrix (of which only the sparsity pattern in the
* form of row pointers and column indices arrays are in the input), a color
* in the colors array. Also return the amount of colors in the return integer.
* This graph-coloring algorithm is based on the Jones-Plassmann algorithm, proposed in:
* "A Parallel Graph Coloring Heuristic" by M.T. Jones and P.E. Plassmann in SIAM Journal of Scientific Computing 14 (1993) */
template <unsigned int block_size>
int colorBlockedNodes(int rows, const int *CSRRowPointers, const int *CSRColIndices, const int *CSCColPointers, const int *CSCRowIndices, std::vector<int>& colors, int maxRowsPerColor, int maxColsPerColor)
{
auto left = static_cast<std::vector<int>::difference_type>(colors.size());
int c = -1;
const int max_tries = 100; // since coloring is random, it is possible that a coloring fails. In that case, try again.
std::vector<bool> visitedColumns(rows, false);
auto gen = make_urng();
std::vector<int> randoms(rows);
for (unsigned int t = 0; t < max_tries; t++) {
// (re)initialize data for coloring process
std::uniform_int_distribution<int> uniform{}; // 0 .. INT_MAX
std::generate(randoms.begin(), randoms.end(),
[&uniform, &gen]()
{
return uniform(gen);
});
std::fill(colors.begin(), colors.end(), -1);
// actually perform coloring
for (c = 0; c < MAX_COLORS; c++) {
unsigned int rowsInColor = 0u;
unsigned int colsInColor = 0u;
for (int i = 0; i < rows; i++)
{
bool iMax = true; // true iff you have max random
// ignore nodes colored earlier
if ((colors[i] != -1))
continue;
int ir = randoms[i];
// look at all nodex that node i is connected to
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
// ignore nodes colored earlier (and yourself)
int j = CSRColIndices[k];
int jc = colors[j];
if (((jc != -1) && (jc != c)) || (i == j)) {
continue;
}
// node i is not in the current color if one of its neighbours shares this color,
if (jc == c) {
iMax = false;
break;
}
// or if one of its uncolored neighbours has a higher random value
int jr = randoms[j];
if (ir <= jr) {
iMax = false;
break;
}
}
// look at all nodes that have a connection to node i
for (int k = CSCColPointers[i]; k < CSCColPointers[i + 1]; k++) {
// ignore nodes colored earlier (and yourself)
int j = CSCRowIndices[k];
int jc = colors[j];
if (((jc != -1) && (jc != c)) || (i == j)) {
continue;
}
// node i is not in the current color if one of its neighbours shares this color,
if (jc == c) {
iMax = false;
break;
}
// or if one of its uncolored neighbours has a higher random value
int jr = randoms[j];
if (ir <= jr) {
iMax = false;
break;
}
}
// assign color if you have the maximum random number
if (iMax) {
unsigned int additionalColsInRow = 0u;
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
int j = CSRColIndices[k];
if (!visitedColumns[j]) {
visitedColumns[j] = true;
additionalColsInRow += block_size;
}
}
if ((colsInColor + additionalColsInRow) > static_cast<unsigned int>(maxColsPerColor)) {
break;
}
colsInColor += additionalColsInRow;
colors[i] = c;
rowsInColor += block_size;
if ((rowsInColor + block_size - 1) >= static_cast<unsigned int>(maxRowsPerColor)) {
break;
}
}
}
// Check if graph coloring is done.
left = std::count_if(colors.begin(), colors.end(),
[](const int color) { return color == -1; });
if (left == 0) {
return c + 1;
}
}
}
std::ostringstream oss;
oss << "Error could not find a graph coloring with " << c << " colors after " << max_tries << " tries.\nNumber of colorless nodes: " << left;
OPM_THROW(std::logic_error, oss.str());
return -1;
}
/* Reorder a matrix by a specified input order.
* Both a to order array, which contains for every node from the old matrix where it will move in the new matrix,
* and the from order, which contains for every node in the new matrix where it came from in the old matrix.*/
void reorderBlockedMatrixByPattern(BlockedMatrix *mat, int *toOrder, int *fromOrder, BlockedMatrix *rmat) {
assert(mat->block_size == rmat->block_size);
const unsigned int bs = mat->block_size;
int rIndex = 0;
int i, k;
unsigned int j;
rmat->rowPointers[0] = 0;
for (i = 0; i < mat->Nb; i++) {
int thisRow = fromOrder[i];
// put thisRow from the old matrix into row i of the new matrix
rmat->rowPointers[i + 1] = rmat->rowPointers[i] + mat->rowPointers[thisRow + 1] - mat->rowPointers[thisRow];
for (k = mat->rowPointers[thisRow]; k < mat->rowPointers[thisRow + 1]; k++) {
for (j = 0; j < bs * bs; j++) {
rmat->nnzValues[rIndex * bs * bs + j] = mat->nnzValues[k * bs * bs + j];
}
rmat->colIndices[rIndex] = mat->colIndices[k];
rIndex++;
}
}
// re-assign column indices according to the new positions of the nodes referenced by the column indices
for (i = 0; i < mat->nnzbs; i++) {
rmat->colIndices[i] = toOrder[rmat->colIndices[i]];
}
// re-sort the column indices of every row.
for (i = 0; i < mat->Nb; i++) {
sortBlockedRow(rmat->colIndices, rmat->nnzValues, rmat->rowPointers[i], rmat->rowPointers[i + 1] - 1, bs);
}
}
/* Reorder a matrix according to the colors that every node of the matrix has received*/
void colorsToReordering(int Nb, std::vector<int>& colors, int numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
int reordered = 0;
// Find reordering patterns
for (int c = 0; c < numColors; c++) {
for (int i = 0; i < Nb; i++) {
if (colors[i] == c) {
rowsPerColor[c]++;
toOrder[i] = reordered;
fromOrder[reordered] = i;
reordered++;
}
}
}
}
// Reorder a vector according to a reordering pattern
template <unsigned int block_size>
void reorderBlockedVectorByPattern(int Nb, double *vector, int *fromOrder, double *rVector) {
for (int i = 0; i < Nb; i++) {
for (unsigned int j = 0; j < block_size; j++) {
rVector[block_size * i + j] = vector[block_size * fromOrder[i] + j];
}
}
}
/* Check is operations on a node in the matrix can be started
* A node can only be started if all nodes that it depends on during sequential execution have already completed.*/
bool canBeStarted(const int rowIndex, const int *rowPointers, const int *colIndices, const std::vector<bool>& doneRows) {
bool canStart = !doneRows[rowIndex];
int i, thisDependency;
if (canStart) {
for (i = rowPointers[rowIndex]; i < rowPointers[rowIndex + 1]; i++) {
thisDependency = colIndices[i];
// Only dependencies on rows that should execute before the current one are relevant
if (thisDependency >= rowIndex)
break;
// Check if dependency has been resolved
if (!doneRows[thisDependency]) {
return false;
}
}
}
return canStart;
}
/*
* The level scheduling of a non-symmetric, blocked matrix requires access to a CSC encoding and a CSR encoding of the sparsity pattern of the input matrix.
* This function is based on a standard level scheduling algorithm, like the one described in:
* "Iterative methods for Sparse Linear Systems" by Yousef Saad in section 11.6.3
*/
void findLevelScheduling(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb, int *numColors, int *toOrder, int* fromOrder, std::vector<int>& rowsPerColor) {
int activeRowIndex = 0, colorEnd, nextActiveRowIndex = 0;
int thisRow;
std::vector<bool> doneRows(Nb, false);
std::vector <int> rowsToStart;
// since emplace_back() is used to fill, the vector must be empty
assert(rowsPerColor.empty());
// find starting rows: rows that are independent from all rows that come before them.
for (thisRow = 0; thisRow < Nb; thisRow++) {
if (canBeStarted(thisRow, CSCColPointers, CSCRowIndices, doneRows)) {
fromOrder[nextActiveRowIndex] = thisRow;
toOrder[thisRow] = nextActiveRowIndex;
nextActiveRowIndex++;
}
}
// 'do' compute on all active rows
for (colorEnd = 0; colorEnd < nextActiveRowIndex; colorEnd++) {
doneRows[fromOrder[colorEnd]] = true;
}
rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex);
while (colorEnd < Nb) {
// Go over all rows active from the last color, and check which of their neighbours can be activated this color
for (; activeRowIndex < colorEnd; activeRowIndex++) {
thisRow = fromOrder[activeRowIndex];
for (int i = CSCColPointers[thisRow]; i < CSCColPointers[thisRow + 1]; i++) {
int thatRow = CSCRowIndices[i];
if (canBeStarted(thatRow, CSRRowPointers, CSRColIndices, doneRows)) {
rowsToStart.emplace_back(thatRow);
}
}
}
// 'do' compute on all active rows
for (unsigned int i = 0; i < rowsToStart.size(); i++) {
thisRow = rowsToStart[i];
if (!doneRows[thisRow]) {
doneRows[thisRow] = true;
fromOrder[nextActiveRowIndex] = thisRow;
toOrder[thisRow] = nextActiveRowIndex;
nextActiveRowIndex++;
}
}
colorEnd = nextActiveRowIndex;
rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex);
}
*numColors = rowsPerColor.size();
}
/* Perform the complete graph coloring algorithm on a matrix. Return an array with the amount of nodes per color.*/
template <unsigned int block_size>
void findGraphColoring(const int *CSRColIndices, const int *CSRRowPointers, const int *CSCRowIndices, const int *CSCColPointers, int Nb, int maxRowsPerColor, int maxColsPerColor, int *numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
std::vector<int> rowColor(Nb);
*numColors = colorBlockedNodes<block_size>(Nb, CSRRowPointers, CSRColIndices, CSCColPointers, CSCRowIndices, rowColor, maxRowsPerColor, maxColsPerColor);
rowsPerColor.resize(*numColors);
colorsToReordering(Nb, rowColor, *numColors, toOrder, fromOrder, rowsPerColor);
}
// based on the scipy package from python, scipy/sparse/sparsetools/csr.h on github
void csrPatternToCsc(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb) {
int nnz = CSRRowPointers[Nb];
// compute number of nnzs per column
std::fill(CSCColPointers, CSCColPointers + Nb, 0);
for (int n = 0; n < nnz; ++n) {
CSCColPointers[CSRColIndices[n]]++;
}
// cumsum the nnz per col to get CSCColPointers
for (int col = 0, cumsum = 0; col < Nb; ++col) {
int temp = CSCColPointers[col];
CSCColPointers[col] = cumsum;
cumsum += temp;
}
CSCColPointers[Nb] = nnz;
for (int row = 0; row < Nb; ++row) {
for (int j = CSRRowPointers[row]; j < CSRRowPointers[row + 1]; ++j) {
int col = CSRColIndices[j];
int dest = CSCColPointers[col];
CSCRowIndices[dest] = row;
CSCColPointers[col]++;
}
}
for (int col = 0, last = 0; col <= Nb; ++col) {
int temp = CSCColPointers[col];
CSCColPointers[col] = last;
last = temp;
}
}
#define INSTANTIATE_BDA_FUNCTIONS(n) \
template int colorBlockedNodes<n>(int, const int *, const int *, const int *, const int *, std::vector<int>&, int, int); \
template void reorderBlockedVectorByPattern<n>(int, double*, int*, double*); \
template void findGraphColoring<n>(const int *, const int *, const int *, const int *, int, int, int, int *, int *, int *, std::vector<int>&); \
INSTANTIATE_BDA_FUNCTIONS(1);
INSTANTIATE_BDA_FUNCTIONS(2);
INSTANTIATE_BDA_FUNCTIONS(3);
INSTANTIATE_BDA_FUNCTIONS(4);
INSTANTIATE_BDA_FUNCTIONS(5);
INSTANTIATE_BDA_FUNCTIONS(6);
#undef INSTANTIATE_BDA_FUNCTIONS
} // namespace Accelerator
} // namespace Opm