opm-simulators/opm/polymer/IncompPropertiesDefaultPolymer.hpp
2015-10-12 15:24:59 +02:00

145 lines
5.2 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_INCOMPPROPERTIESDEFAULTPOLYMER_HEADER_INCLUDED
#define OPM_INCOMPPROPERTIESDEFAULTPOLYMER_HEADER_INCLUDED
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <vector>
namespace Opm
{
class IncompPropertiesDefaultPolymer : public Opm::IncompPropertiesBasic
{
public:
/// Construct from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
IncompPropertiesDefaultPolymer(const Opm::parameter::ParameterGroup& param, int dim, int num_cells)
: Opm::IncompPropertiesBasic(param, dim, num_cells)
{
assert(numPhases() == 2);
sw_.resize(3);
sw_[0] = 0.2;
sw_[1] = 0.7;
sw_[2] = 1.0;
krw_.resize(3);
krw_[0] = 0.0;
krw_[1] = 0.7;
krw_[2] = 1.0;
so_.resize(2);
so_[0] = 0.3;
so_[1] = 0.8;
kro_.resize(2);
kro_[0] = 0.0;
kro_[1] = 1.0;
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
virtual void relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
// assert(dkrds == 0);
// We assume two phases flow
for (int i = 0; i < n; ++i) {
kr[2*i] = krw(s[2*i]);
kr[2*i+1] = kro(s[2*i+1]);
if (dkrds != 0) {
dkrds[4*i + 0] = krw_dsw(s[2*i]);
dkrds[4*i + 3] = kro_dso(s[2*i+1]);
dkrds[4*i + 1] = 0.0;
dkrds[4*i + 2] = 0.0;
}
}
}
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* /*cells*/,
double* smin,
double* smax) const
{
const int np = 2;
for (int i = 0; i < n; ++i) {
smin[np*i + 0] = sw_[0];
smax[np*i + 0] = sw_.back();
smin[np*i + 1] = 1.0 - sw_[0];
smax[np*i + 1] = 1.0 - sw_.back();
}
}
private:
double krw(double s) const
{
return Opm::linearInterpolation(sw_, krw_, s);
}
double krw_dsw(double s) const
{
return Opm::linearInterpolationDerivative(sw_, krw_, s);
}
double kro(double s) const
{
return Opm::linearInterpolation(so_, kro_, s);
}
double kro_dso(double s) const
{
return Opm::linearInterpolationDerivative(so_, kro_, s);
}
std::vector<double> sw_;
std::vector<double> krw_;
std::vector<double> so_;
std::vector<double> kro_;
};
} // namespace Opm
#endif // OPM_INCOMPPROPERTIESDEFAULTPOLYMER_HEADER_INCLUDED