opm-simulators/opm/simulators/wells/BlackoilWellModel.hpp

550 lines
22 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <cassert>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <stddef.h>
#include <opm/input/eclipse/EclipseState/Runspec.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/input/eclipse/Schedule/Group/GuideRate.hpp>
#include <opm/input/eclipse/Schedule/Group/Group.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/wells/GasLiftSingleWellGeneric.hpp>
#include <opm/simulators/wells/GasLiftStage2.hpp>
#include <opm/simulators/wells/GasLiftGroupInfo.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/RegionAverageCalculator.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/MultisegmentWell.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/timestepping/gatherConvergenceReport.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableTerminalOutput {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilWellModel : public BaseAuxiliaryModule<TypeTag>
, public BlackoilWellModelGeneric
{
public:
// --------- Types ---------
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using GasLiftSingleWell = typename WellInterface<TypeTag>::GasLiftSingleWell;
using GLiftOptWells = typename BlackoilWellModelGeneric::GLiftOptWells;
using GLiftProdWells = typename BlackoilWellModelGeneric::GLiftProdWells;
using GLiftWellStateMap =
typename BlackoilWellModelGeneric::GLiftWellStateMap;
using GLiftEclWells = typename GasLiftGroupInfo::GLiftEclWells;
using GLiftSyncGroups = typename GasLiftSingleWellGeneric::GLiftSyncGroups;
constexpr static std::size_t pressureVarIndex = GetPropType<TypeTag, Properties::Indices>::pressureSwitchIdx;
typedef typename BaseAuxiliaryModule<TypeTag>::NeighborSet NeighborSet;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
static constexpr bool has_micp_ = getPropValue<TypeTag, Properties::EnableMICP>();
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilMICPModule<TypeTag> MICPModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
// For computing average pressured used by gpmaint
using AverageRegionalPressureType = RegionAverageCalculator::
AverageRegionalPressure<FluidSystem, std::vector<int> >;
BlackoilWellModel(Simulator& ebosSimulator);
void init();
void initWellContainer() override;
/////////////
// <eWoms auxiliary module stuff>
/////////////
unsigned numDofs() const override
// No extra dofs are inserted for wells. (we use a Schur complement.)
{ return 0; }
void addNeighbors(std::vector<NeighborSet>& neighbors) const override;
void applyInitial() override
{}
void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res) override;
void postSolve(GlobalEqVector& deltaX) override
{
recoverWellSolutionAndUpdateWellState(deltaX);
}
/////////////
// </ eWoms auxiliary module stuff>
/////////////
template <class Restarter>
void deserialize(Restarter& /* res */)
{
// TODO (?)
}
/*!
* \brief This method writes the complete state of the well
* to the harddisk.
*/
template <class Restarter>
void serialize(Restarter& /* res*/)
{
// TODO (?)
}
void beginEpisode()
{
beginReportStep(ebosSimulator_.episodeIndex());
}
void beginTimeStep();
void beginIteration()
{
assemble(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize());
}
void endIteration()
{ }
void endTimeStep()
{
timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize());
}
void endEpisode()
{
endReportStep();
}
template <class Context>
void computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
using WellInterfacePtr = std::shared_ptr<WellInterface<TypeTag> >;
using BlackoilWellModelGeneric::initFromRestartFile;
void initFromRestartFile(const RestartValue& restartValues)
{
initFromRestartFile(restartValues,
this->ebosSimulator_.vanguard().transferWTestState(),
UgGridHelpers::numCells(grid()),
param_.use_multisegment_well_);
}
data::Wells wellData() const
{
auto wsrpt = this->wellState()
.report(UgGridHelpers::globalCell(this->grid()),
[this](const int well_index) -> bool
{
return this->wasDynamicallyShutThisTimeStep(well_index);
});
this->assignWellTracerRates(wsrpt);
this->assignWellGuideRates(wsrpt, this->reportStepIndex());
this->assignShutConnections(wsrpt, this->reportStepIndex());
return wsrpt;
}
// subtract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
#if HAVE_CUDA || HAVE_OPENCL
// accumulate the contributions of all Wells in the WellContributions object
void getWellContributions(WellContributions& x) const;
#endif
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// Check if well equations is converged.
ConvergenceReport getWellConvergence(const std::vector<Scalar>& B_avg, const bool checkGroupConvergence = false) const;
const SimulatorReportSingle& lastReport() const;
void addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
// called at the beginning of a report step
void beginReportStep(const int time_step);
void updatePerforationIntensiveQuantities();
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities(DeferredLogger& deferred_logger) const;
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep(DeferredLogger& deferred_logger);
void initPrimaryVariablesEvaluation() const;
void updateWellControls(DeferredLogger& deferred_logger, const bool checkGroupControls);
void updateAndCommunicate(const int reportStepIdx,
const int iterationIdx,
DeferredLogger& deferred_logger);
WellInterfacePtr getWell(const std::string& well_name) const;
bool hasWell(const std::string& well_name) const;
using PressureMatrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1>>;
int numLocalWellsEnd() const
{
auto w = schedule().getWellsatEnd();
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w.size();
}
void addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian[wdof][wdof] = 1.0;// better scaling ?
}
for (const auto& well : well_container_) {
well->addWellPressureEquations(jacobian, weights, pressureVarIndex);
}
}
std::vector<std::vector<int>> getMaxWellConnections() const
{
std::vector<std::vector<int>> wells;
// Create cartesian to compressed mapping
const auto& globalCell = grid().globalCell();
const auto& cartesianSize = grid().logicalCartesianSize();
auto size = cartesianSize[0]*cartesianSize[1]*cartesianSize[2];
std::vector<int> cartesianToCompressed(size, -1);
auto begin = globalCell.begin();
for ( auto cell = begin, end= globalCell.end(); cell != end; ++cell )
{
cartesianToCompressed[ *cell ] = cell - begin;
}
auto schedule_wells = schedule().getWellsatEnd();
schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end());
wells.reserve(schedule_wells.size());
// initialize the additional cell connections introduced by wells.
for ( const auto& well : schedule_wells )
{
std::vector<int> compressed_well_perforations;
// All possible completions of the well
const auto& completionSet = well.getConnections();
compressed_well_perforations.reserve(completionSet.size());
for ( size_t c=0; c < completionSet.size(); c++ )
{
const auto& completion = completionSet.get(c);
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
int compressed_idx = cartesianToCompressed[cart_grid_idx];
if ( compressed_idx >= 0 ) // Ignore completions in inactive/remote cells.
{
compressed_well_perforations.push_back(compressed_idx);
}
}
if ( ! compressed_well_perforations.empty() )
{
std::sort(compressed_well_perforations.begin(),
compressed_well_perforations.end());
wells.push_back(compressed_well_perforations);
}
}
return wells;
}
void addWellPressureEquationsStruct(PressureMatrix& jacobian) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian.entry(wdof,wdof) = 1.0;// better scaling ?
}
std::vector<std::vector<int>> wellconnections = getMaxWellConnections();
for(int i=0; i < nw; i++){
const auto& perfcells = wellconnections[i];
for(int perfcell : perfcells){
int wdof = rdofs + i;
jacobian.entry(wdof,perfcell) = 0.0;
jacobian.entry(perfcell, wdof) = 0.0;
}
}
for (const auto& well : well_container_) {
well->addWellPressureEquationsStruct(jacobian);
}
}
void initGliftEclWellMap(GLiftEclWells &ecl_well_map);
/// \brief Get list of local nonshut wells
const std::vector<WellInterfacePtr>& localNonshutWells()
{
return well_container_;
}
int numLocalNonshutWells() const
{
return well_container_.size();
}
protected:
Simulator& ebosSimulator_;
// a vector of all the wells.
std::vector<WellInterfacePtr > well_container_{};
std::vector<bool> is_cell_perforated_{};
void initializeWellState(const int timeStepIdx,
const SummaryState& summaryState);
// create the well container
void createWellContainer(const int time_step) override;
WellInterfacePtr
createWellPointer(const int wellID,
const int time_step) const;
template <typename WellType>
std::unique_ptr<WellType>
createTypedWellPointer(const int wellID,
const int time_step) const;
WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, DeferredLogger& deferred_logger) const;
const ModelParameters param_;
size_t global_num_cells_{};
// the number of the cells in the local grid
size_t local_num_cells_{};
double gravity_{};
std::vector<double> depth_{};
bool alternative_well_rate_init_{};
std::unique_ptr<RateConverterType> rateConverter_{};
std::unique_ptr<AverageRegionalPressureType> regionalAveragePressureCalculator_{};
SimulatorReportSingle last_report_{};
// used to better efficiency of calcuation
mutable BVector scaleAddRes_{};
std::vector<Scalar> B_avg_{};
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// called at the end of a time step
void timeStepSucceeded(const double& simulationTime, const double dt);
// called at the end of a report step
void endReportStep();
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables(DeferredLogger& deferred_logger);
void updateAverageFormationFactor();
void computePotentials(const std::size_t widx,
const WellState& well_state_copy,
std::string& exc_msg,
ExceptionType::ExcEnum& exc_type,
DeferredLogger& deferred_logger) override;
const std::vector<double>& wellPerfEfficiencyFactors() const;
void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger) override;
void calculateProductivityIndexValues(DeferredLogger& deferred_logger) override;
void calculateProductivityIndexValues(const WellInterface<TypeTag>* wellPtr,
DeferredLogger& deferred_logger);
// The number of components in the model.
int numComponents() const;
int reportStepIndex() const;
void assembleWellEq(const double dt, Opm::DeferredLogger& deferred_logger);
bool maybeDoGasLiftOptimize(DeferredLogger& deferred_logger);
void gasLiftOptimizationStage1(DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map);
// cannot be const since it accesses the non-const WellState
void gasLiftOptimizationStage1SingleWell(WellInterface<TypeTag> *well,
DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map,
GLiftSyncGroups& groups_to_sync);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// upate the wellTestState related to economic limits
void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const;
void wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger& deferred_logger);
void calcRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff) override;
void calcInjRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff) override;
void computeWellTemperature();
void assignWellTracerRates(data::Wells& wsrpt) const;
int compressedIndexForInterior(int cartesian_cell_idx) const override {
return ebosSimulator_.vanguard().compressedIndexForInterior(cartesian_cell_idx);
}
private:
BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& pu);
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif