opm-simulators/opm/simulators/wells/WellInterface_impl.hpp
Arne Morten Kvarving 1f4b248564 WellInterfaceIndices: remove unnecessary Scalar template parameter
use the Scalar type from the FluidSystem
2024-03-08 15:13:53 +01:00

1852 lines
80 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/common/Exceptions.hpp>
#include <opm/input/eclipse/Schedule/ScheduleTypes.hpp>
#include <opm/input/eclipse/Schedule/Well/WDFAC.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <dune/common/version.hh>
#include <cstddef>
#include <utility>
#include <fmt/format.h>
namespace Opm
{
template<typename TypeTag>
WellInterface<TypeTag>::
WellInterface(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: WellInterfaceIndices<FluidSystem,Indices>(well,
pw_info,
time_step,
rate_converter,
pvtRegionIdx,
num_components,
num_phases,
index_of_well,
perf_data)
, param_(param)
{
connectionRates_.resize(this->number_of_perforations_);
if constexpr (has_solvent || has_zFraction) {
if (well.isInjector()) {
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::GAS) {
this->wsolvent_ = this->well_ecl_.getSolventFraction();
}
}
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& /* depth_arg */,
const double gravity_arg,
const int /* num_cells */,
const std::vector< Scalar >& B_avg,
const bool changed_to_open_this_step)
{
this->phase_usage_ = phase_usage_arg;
this->gravity_ = gravity_arg;
B_avg_ = B_avg;
this->changed_to_open_this_step_ = changed_to_open_this_step;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wpolymer() const
{
if constexpr (has_polymer) {
return this->wpolymer_();
}
return 0.0;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wfoam() const
{
if constexpr (has_foam) {
return this->wfoam_();
}
return 0.0;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wsalt() const
{
if constexpr (has_brine) {
return this->wsalt_();
}
return 0.0;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
wmicrobes() const
{
if constexpr (has_micp) {
return this->wmicrobes_();
}
return 0.0;
}
template<typename TypeTag>
double
WellInterface<TypeTag>::
woxygen() const
{
if constexpr (has_micp) {
return this->woxygen_();
}
return 0.0;
}
// The urea injection concentration is scaled down by a factor of 10, since its value
// can be much bigger than 1 (not doing this slows the simulations). The
// corresponding values are scaled accordingly in blackoilmicpmodules.hh when computing
// the reactions and also when writing the output files (vtk and eclipse format, i.e.,
// vtkblackoilmicpmodule.hh and ecloutputblackoilmodel.hh respectively).
template<typename TypeTag>
double
WellInterface<TypeTag>::
wurea() const
{
if constexpr (has_micp) {
return this->wurea_();
}
return 0.0;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
updateWellControl(const Simulator& simulator,
const IndividualOrGroup iog,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger) /* const */
{
const auto& summary_state = simulator.vanguard().summaryState();
if (this->stopppedOrZeroRateTarget(summary_state, well_state)) {
return false;
}
const auto& summaryState = simulator.vanguard().summaryState();
const auto& schedule = simulator.vanguard().schedule();
const auto& well = this->well_ecl_;
auto& ws = well_state.well(this->index_of_well_);
std::string from;
if (well.isInjector()) {
from = WellInjectorCMode2String(ws.injection_cmode);
} else {
from = WellProducerCMode2String(ws.production_cmode);
}
bool oscillating = std::count(this->well_control_log_.begin(), this->well_control_log_.end(), from) >= param_.max_number_of_well_switches_;
if (oscillating) {
// only output frist time
bool output = std::count(this->well_control_log_.begin(), this->well_control_log_.end(), from) == param_.max_number_of_well_switches_;
if (output) {
std::ostringstream ss;
ss << " The control mode for well " << this->name()
<< " is oscillating\n"
<< " We don't allow for more than "
<< param_.max_number_of_well_switches_
<< " switches. The control is kept at " << from;
deferred_logger.info(ss.str());
// add one more to avoid outputting the same info again
this->well_control_log_.push_back(from);
}
return false;
}
bool changed = false;
if (iog == IndividualOrGroup::Individual) {
changed = this->checkIndividualConstraints(ws, summaryState, deferred_logger);
} else if (iog == IndividualOrGroup::Group) {
changed = this->checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
} else {
assert(iog == IndividualOrGroup::Both);
changed = this->checkConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
}
Parallel::Communication cc = simulator.vanguard().grid().comm();
// checking whether control changed
if (changed) {
std::string to;
if (well.isInjector()) {
to = WellInjectorCMode2String(ws.injection_cmode);
} else {
to = WellProducerCMode2String(ws.production_cmode);
}
std::ostringstream ss;
ss << " Switching control mode for well " << this->name()
<< " from " << from
<< " to " << to;
if (cc.size() > 1) {
ss << " on rank " << cc.rank();
}
deferred_logger.debug(ss.str());
this->well_control_log_.push_back(from);
updateWellStateWithTarget(simulator, group_state, well_state, deferred_logger);
updatePrimaryVariables(summaryState, well_state, deferred_logger);
}
return changed;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
updateWellControlAndStatusLocalIteration(const Simulator& simulator,
WellState& well_state,
const GroupState& group_state,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double wqTotal,
DeferredLogger& deferred_logger,
const bool fixed_control,
const bool fixed_status)
{
const auto& summary_state = simulator.vanguard().summaryState();
const auto& schedule = simulator.vanguard().schedule();
if (this->wellUnderZeroRateTarget(summary_state, well_state) || !(this->well_ecl_.getStatus() == WellStatus::OPEN)) {
return false;
}
const double sgn = this->isInjector() ? 1.0 : -1.0;
if (!this->wellIsStopped()){
if (wqTotal*sgn <= 0.0 && !fixed_status){
this->stopWell();
return true;
} else {
bool changed = false;
if (!fixed_control) {
auto& ws = well_state.well(this->index_of_well_);
const bool hasGroupControl = this->isInjector() ? inj_controls.hasControl(Well::InjectorCMode::GRUP) :
prod_controls.hasControl(Well::ProducerCMode::GRUP);
changed = this->checkIndividualConstraints(ws, summary_state, deferred_logger, inj_controls, prod_controls);
if (hasGroupControl) {
changed = changed || this->checkGroupConstraints(well_state, group_state, schedule, summary_state,deferred_logger);
}
if (changed) {
const bool thp_controlled = this->isInjector() ? ws.injection_cmode == Well::InjectorCMode::THP :
ws.production_cmode == Well::ProducerCMode::THP;
if (!thp_controlled){
// don't call for thp since this might trigger additional local solve
updateWellStateWithTarget(simulator, group_state, well_state, deferred_logger);
} else {
ws.thp = this->getTHPConstraint(summary_state);
}
updatePrimaryVariables(summary_state, well_state, deferred_logger);
}
}
return changed;
}
} else if (!fixed_status){
// well is stopped, check if current bhp allows reopening
const double bhp = well_state.well(this->index_of_well_).bhp;
double prod_limit = prod_controls.bhp_limit;
double inj_limit = inj_controls.bhp_limit;
const bool has_thp = this->wellHasTHPConstraints(summary_state);
if (has_thp){
std::vector<double> rates(this->num_components_);
if (this->isInjector()){
const double bhp_thp = WellBhpThpCalculator(*this).calculateBhpFromThp(well_state, rates, this->well_ecl_, summary_state, this->getRefDensity(), deferred_logger);
inj_limit = std::min(bhp_thp, inj_controls.bhp_limit);
} else {
// if the well can operate, it must at least be able to produce at the lowest bhp of the bhp-curve (explicit fractions)
const double bhp_min = WellBhpThpCalculator(*this).calculateMinimumBhpFromThp(well_state, this->well_ecl_, summary_state, this->getRefDensity());
prod_limit = std::max(bhp_min, prod_controls.bhp_limit);
}
}
const double bhp_diff = (this->isInjector())? inj_limit - bhp: bhp - prod_limit;
if (bhp_diff > 0){
this->openWell();
well_state.well(this->index_of_well_).bhp = (this->isInjector())? inj_limit : prod_limit;
if (has_thp) {
well_state.well(this->index_of_well_).thp = this->getTHPConstraint(summary_state);
}
return true;
} else {
return false;
}
} else {
return false;
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
wellTesting(const Simulator& simulator,
const double simulation_time,
/* const */ WellState& well_state,
const GroupState& group_state,
WellTestState& well_test_state,
DeferredLogger& deferred_logger)
{
deferred_logger.info(" well " + this->name() + " is being tested");
WellState well_state_copy = well_state;
auto& ws = well_state_copy.well(this->indexOfWell());
updateWellStateWithTarget(simulator, group_state, well_state_copy, deferred_logger);
calculateExplicitQuantities(simulator, well_state_copy, deferred_logger);
const auto& summary_state = simulator.vanguard().summaryState();
updatePrimaryVariables(summary_state, well_state_copy, deferred_logger);
initPrimaryVariablesEvaluation();
if (this->isProducer()) {
const auto& schedule = simulator.vanguard().schedule();
const auto report_step = simulator.episodeIndex();
const auto& glo = schedule.glo(report_step);
if (glo.active()) {
gliftBeginTimeStepWellTestUpdateALQ(simulator, well_state_copy, deferred_logger);
}
}
WellTestState welltest_state_temp;
bool testWell = true;
// if a well is closed because all completions are closed, we need to check each completion
// individually. We first open all completions, then we close one by one by calling updateWellTestState
// untill the number of closed completions do not increase anymore.
while (testWell) {
const std::size_t original_number_closed_completions = welltest_state_temp.num_closed_completions();
bool converged = solveWellForTesting(simulator, well_state_copy, group_state, deferred_logger);
if (!converged) {
const auto msg = fmt::format("WTEST: Well {} is not solvable (physical)", this->name());
deferred_logger.debug(msg);
return;
}
updateWellOperability(simulator, well_state_copy, deferred_logger);
if ( !this->isOperableAndSolvable() ) {
const auto msg = fmt::format("WTEST: Well {} is not operable (physical)", this->name());
deferred_logger.debug(msg);
return;
}
std::vector<double> potentials;
try {
computeWellPotentials(simulator, well_state_copy, potentials, deferred_logger);
} catch (const std::exception& e) {
const std::string msg = std::string("well ") + this->name() + std::string(": computeWellPotentials() failed during testing for re-opening: ") + e.what();
deferred_logger.info(msg);
return;
}
const int np = well_state_copy.numPhases();
for (int p = 0; p < np; ++p) {
ws.well_potentials[p] = std::max(0.0, potentials[p]);
}
this->updateWellTestState(well_state_copy.well(this->indexOfWell()), simulation_time, /*writeMessageToOPMLog=*/ false, welltest_state_temp, deferred_logger);
this->closeCompletions(welltest_state_temp);
// Stop testing if the well is closed or shut due to all completions shut
// Also check if number of completions has increased. If the number of closed completions do not increased
// we stop the testing.
// TODO: it can be tricky here, if the well is shut/closed due to other reasons
if ( welltest_state_temp.num_closed_wells() > 0 ||
(original_number_closed_completions == welltest_state_temp.num_closed_completions()) ) {
testWell = false; // this terminates the while loop
}
}
// update wellTestState if the well test succeeds
if (!welltest_state_temp.well_is_closed(this->name())) {
well_test_state.open_well(this->name());
std::string msg = std::string("well ") + this->name() + std::string(" is re-opened");
deferred_logger.info(msg);
// also reopen completions
for (auto& completion : this->well_ecl_.getCompletions()) {
if (!welltest_state_temp.completion_is_closed(this->name(), completion.first))
well_test_state.open_completion(this->name(), completion.first);
}
// set the status of the well_state to open
ws.open();
well_state = well_state_copy;
}
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
iterateWellEquations(const Simulator& simulator,
const double dt,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
const auto& summary_state = simulator.vanguard().summaryState();
const auto inj_controls = this->well_ecl_.isInjector() ? this->well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = this->well_ecl_.isProducer() ? this->well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
bool converged = false;
try {
// TODO: the following two functions will be refactored to be one to reduce the code duplication
if (!this->param_.local_well_solver_control_switching_){
converged = this->iterateWellEqWithControl(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
} else {
if (this->param_.use_implicit_ipr_ && this->well_ecl_.isProducer() && this->wellHasTHPConstraints(summary_state) && (this->well_ecl_.getStatus() == WellStatus::OPEN)) {
converged = solveWellWithTHPConstraint(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
} else {
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
}
} catch (NumericalProblem& e ) {
const std::string msg = "Inner well iterations failed for well " + this->name() + " Treat the well as unconverged. ";
deferred_logger.warning("INNER_ITERATION_FAILED", msg);
converged = false;
}
return converged;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
solveWellWithTHPConstraint(const Simulator& simulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
const auto& summary_state = simulator.vanguard().summaryState();
bool is_operable = true;
bool converged = true;
auto& ws = well_state.well(this->index_of_well_);
// if well is stopped, check if we can reopen
if (this->wellIsStopped()) {
this->openWell();
auto bhp_target = estimateOperableBhp(simulator, dt, well_state, summary_state, deferred_logger);
if (!bhp_target.has_value()) {
// no intersection with ipr
const auto msg = fmt::format("estimateOperableBhp: Did not find operable BHP for well {}", this->name());
deferred_logger.debug(msg);
is_operable = false;
// solve with zero rates
solveWellWithZeroRate(simulator, dt, well_state, deferred_logger);
this->stopWell();
} else {
// solve well with the estimated target bhp (or limit)
ws.thp = this->getTHPConstraint(summary_state);
const double bhp = std::max(bhp_target.value(), prod_controls.bhp_limit);
solveWellWithBhp(simulator, dt, bhp, well_state, deferred_logger);
}
}
// solve well-equation
if (is_operable) {
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
const bool isThp = ws.production_cmode == Well::ProducerCMode::THP;
// check stability of solution under thp-control
if (converged && !this->stopppedOrZeroRateTarget(summary_state, well_state) && isThp) {
auto rates = well_state.well(this->index_of_well_).surface_rates;
this->adaptRatesForVFP(rates);
this->updateIPRImplicit(simulator, well_state, deferred_logger);
bool is_stable = WellBhpThpCalculator(*this).isStableSolution(well_state, this->well_ecl_, rates, summary_state);
if (!is_stable) {
// solution converged to an unstable point!
this->operability_status_.use_vfpexplicit = true;
auto bhp_stable = WellBhpThpCalculator(*this).estimateStableBhp(well_state, this->well_ecl_, rates, this->getRefDensity(), summary_state);
// if we find an intersection with a sufficiently lower bhp, re-solve equations
const double reltol = 1e-3;
const double cur_bhp = ws.bhp;
if (bhp_stable.has_value() && cur_bhp - bhp_stable.value() > cur_bhp*reltol){
const auto msg = fmt::format("Well {} converged to an unstable solution, re-solving", this->name());
deferred_logger.debug(msg);
solveWellWithBhp(simulator, dt, bhp_stable.value(), well_state, deferred_logger);
// re-solve with hopefully good initial guess
ws.thp = this->getTHPConstraint(summary_state);
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
}
}
if (!converged) {
// Well did not converge, switch to explicit fractions
this->operability_status_.use_vfpexplicit = true;
this->openWell();
auto bhp_target = estimateOperableBhp(simulator, dt, well_state, summary_state, deferred_logger);
if (!bhp_target.has_value()) {
// well can't operate using explicit fractions
is_operable = false;
// solve with zero rate
converged = solveWellWithZeroRate(simulator, dt, well_state, deferred_logger);
this->stopWell();
} else {
// solve well with the estimated target bhp (or limit)
const double bhp = std::max(bhp_target.value(), prod_controls.bhp_limit);
solveWellWithBhp(simulator, dt, bhp, well_state, deferred_logger);
ws.thp = this->getTHPConstraint(summary_state);
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
}
// update operability
is_operable = is_operable && !this->wellIsStopped();
this->operability_status_.can_obtain_bhp_with_thp_limit = is_operable;
this->operability_status_.obey_thp_limit_under_bhp_limit = is_operable;
return converged;
}
template<typename TypeTag>
std::optional<double>
WellInterface<TypeTag>::
estimateOperableBhp(const Simulator& simulator,
const double dt,
WellState& well_state,
const SummaryState& summary_state,
DeferredLogger& deferred_logger)
{
// Given an unconverged well or closed well, estimate an operable bhp (if any)
// Get minimal bhp from vfp-curve
double bhp_min = WellBhpThpCalculator(*this).calculateMinimumBhpFromThp(well_state, this->well_ecl_, summary_state, this->getRefDensity());
// Solve
const bool converged = solveWellWithBhp(simulator, dt, bhp_min, well_state, deferred_logger);
if (!converged || this->wellIsStopped()) {
return std::nullopt;
}
this->updateIPRImplicit(simulator, well_state, deferred_logger);
auto rates = well_state.well(this->index_of_well_).surface_rates;
this->adaptRatesForVFP(rates);
return WellBhpThpCalculator(*this).estimateStableBhp(well_state, this->well_ecl_, rates, this->getRefDensity(), summary_state);
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
solveWellWithBhp(const Simulator& simulator,
const double dt,
const double bhp,
WellState& well_state,
DeferredLogger& deferred_logger)
{
// Solve a well using single bhp-constraint (but close if not operable under this)
auto group_state = GroupState(); // empty group
auto inj_controls = Well::InjectionControls(0);
auto prod_controls = Well::ProductionControls(0);
auto& ws = well_state.well(this->index_of_well_);
auto cmode_inj = ws.injection_cmode;
auto cmode_prod = ws.production_cmode;
if (this->isInjector()) {
inj_controls.addControl(Well::InjectorCMode::BHP);
inj_controls.bhp_limit = bhp;
inj_controls.cmode = Well::InjectorCMode::BHP;
ws.injection_cmode = Well::InjectorCMode::BHP;
} else {
prod_controls.addControl(Well::ProducerCMode::BHP);
prod_controls.bhp_limit = bhp;
prod_controls.cmode = Well::ProducerCMode::BHP;
ws.production_cmode = Well::ProducerCMode::BHP;
}
// update well-state
ws.bhp = bhp;
// solve
const bool converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger, /*fixed_control*/true);
ws.injection_cmode = cmode_inj;
ws.production_cmode = cmode_prod;
return converged;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
solveWellWithZeroRate(const Simulator& simulator,
const double dt,
WellState& well_state,
DeferredLogger& deferred_logger)
{
// Solve a well as stopped
const auto well_status_orig = this->wellStatus_;
this->stopWell();
auto group_state = GroupState(); // empty group
auto inj_controls = Well::InjectionControls(0);
auto prod_controls = Well::ProductionControls(0);
const bool converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger, /*fixed_control*/true, /*fixed_status*/ true);
this->wellStatus_ = well_status_orig;
return converged;
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
solveWellForTesting(const Simulator& simulator, WellState& well_state, const GroupState& group_state,
DeferredLogger& deferred_logger)
{
// keep a copy of the original well state
const WellState well_state0 = well_state;
const double dt = simulator.timeStepSize();
const auto& summary_state = simulator.vanguard().summaryState();
const bool has_thp_limit = this->wellHasTHPConstraints(summary_state);
bool converged;
if (has_thp_limit) {
well_state.well(this->indexOfWell()).production_cmode = Well::ProducerCMode::THP;
converged = gliftBeginTimeStepWellTestIterateWellEquations(
simulator, dt, well_state, group_state, deferred_logger);
}
else {
well_state.well(this->indexOfWell()).production_cmode = Well::ProducerCMode::BHP;
converged = iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
}
if (converged) {
deferred_logger.debug("WellTest: Well equation for well " + this->name() + " converged");
return true;
}
const int max_iter = param_.max_welleq_iter_;
deferred_logger.debug("WellTest: Well equation for well " + this->name() + " failed converging in "
+ std::to_string(max_iter) + " iterations");
well_state = well_state0;
return false;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
solveWellEquation(const Simulator& simulator,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
if (!this->isOperableAndSolvable() && !this->wellIsStopped())
return;
// keep a copy of the original well state
const WellState well_state0 = well_state;
const double dt = simulator.timeStepSize();
bool converged = iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
// Newly opened wells with THP control sometimes struggles to
// converge due to bad initial guess. Or due to the simple fact
// that the well needs to change to another control.
// We therefore try to solve the well with BHP control to get
// an better initial guess.
// If the well is supposed to operate under THP control
// "updateWellControl" will switch it back to THP later.
if (!converged) {
auto& ws = well_state.well(this->indexOfWell());
bool thp_control = false;
if (this->well_ecl_.isInjector()) {
thp_control = ws.injection_cmode == Well::InjectorCMode::THP;
if (thp_control) {
ws.injection_cmode = Well::InjectorCMode::BHP;
this->well_control_log_.push_back(WellInjectorCMode2String(Well::InjectorCMode::THP));
}
} else {
thp_control = ws.production_cmode == Well::ProducerCMode::THP;
if (thp_control) {
ws.production_cmode = Well::ProducerCMode::BHP;
this->well_control_log_.push_back(WellProducerCMode2String(Well::ProducerCMode::THP));
}
}
if (thp_control) {
const std::string msg = std::string("The newly opened well ") + this->name()
+ std::string(" with THP control did not converge during inner iterations, we try again with bhp control");
deferred_logger.debug(msg);
converged = this->iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
}
}
if (!converged) {
const int max_iter = param_.max_welleq_iter_;
deferred_logger.debug("Compute initial well solution for well " + this->name() + ". Failed to converge in "
+ std::to_string(max_iter) + " iterations");
well_state = well_state0;
}
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
assembleWellEq(const Simulator& simulator,
const double dt,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
prepareWellBeforeAssembling(simulator, dt, well_state, group_state, deferred_logger);
assembleWellEqWithoutIteration(simulator, dt, well_state, group_state, deferred_logger);
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
assembleWellEqWithoutIteration(const Simulator& simulator,
const double dt,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
const auto& summary_state = simulator.vanguard().summaryState();
const auto inj_controls = this->well_ecl_.isInjector() ? this->well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = this->well_ecl_.isProducer() ? this->well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
// TODO: the reason to have inj_controls and prod_controls in the arguments, is that we want to change the control used for the well functions
// TODO: maybe we can use std::optional or pointers to simplify here
assembleWellEqWithoutIteration(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
prepareWellBeforeAssembling(const Simulator& simulator,
const double dt,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger)
{
const bool old_well_operable = this->operability_status_.isOperableAndSolvable();
if (param_.check_well_operability_iter_)
checkWellOperability(simulator, well_state, deferred_logger);
// only use inner well iterations for the first newton iterations.
const int iteration_idx = simulator.model().newtonMethod().numIterations();
if (iteration_idx < param_.max_niter_inner_well_iter_ || this->well_ecl_.isMultiSegment()) {
this->operability_status_.solvable = true;
bool converged = this->iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
// unsolvable wells are treated as not operable and will not be solved for in this iteration.
if (!converged) {
if (param_.shut_unsolvable_wells_)
this->operability_status_.solvable = false;
}
}
if (this->operability_status_.has_negative_potentials) {
auto well_state_copy = well_state;
std::vector<double> potentials;
try {
computeWellPotentials(simulator, well_state_copy, potentials, deferred_logger);
} catch (const std::exception& e) {
const std::string msg = std::string("well ") + this->name() + std::string(": computeWellPotentials() failed during attempt to recompute potentials for well : ") + e.what();
deferred_logger.info(msg);
this->operability_status_.has_negative_potentials = true;
}
auto& ws = well_state.well(this->indexOfWell());
const int np = well_state.numPhases();
for (int p = 0; p < np; ++p) {
ws.well_potentials[p] = std::max(0.0, potentials[p]);
}
}
this->changed_to_open_this_step_ = false;
const bool well_operable = this->operability_status_.isOperableAndSolvable();
if (!well_operable && old_well_operable) {
deferred_logger.info(" well " + this->name() + " gets STOPPED during iteration ");
this->stopWell();
changed_to_stopped_this_step_ = true;
} else if (well_operable && !old_well_operable) {
deferred_logger.info(" well " + this->name() + " gets REVIVED during iteration ");
this->openWell();
changed_to_stopped_this_step_ = false;
this->changed_to_open_this_step_ = true;
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::addCellRates(RateVector& rates, int cellIdx) const
{
if(!this->isOperableAndSolvable() && !this->wellIsStopped())
return;
for (int perfIdx = 0; perfIdx < this->number_of_perforations_; ++perfIdx) {
if (this->cells()[perfIdx] == cellIdx) {
for (int i = 0; i < RateVector::dimension; ++i) {
rates[i] += connectionRates_[perfIdx][i];
}
}
}
}
template<typename TypeTag>
typename WellInterface<TypeTag>::Scalar
WellInterface<TypeTag>::volumetricSurfaceRateForConnection(int cellIdx, int phaseIdx) const {
for (int perfIdx = 0; perfIdx < this->number_of_perforations_; ++perfIdx) {
if (this->cells()[perfIdx] == cellIdx) {
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
return connectionRates_[perfIdx][activeCompIdx].value();
}
}
// this is not thread safe
OPM_THROW(std::invalid_argument, "The well with name " + this->name()
+ " does not perforate cell " + std::to_string(cellIdx));
return 0.0;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
checkWellOperability(const Simulator& simulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
if (!param_.check_well_operability_) {
return;
}
if (this->wellIsStopped() && !changed_to_stopped_this_step_) {
return;
}
updateWellOperability(simulator, well_state, deferred_logger);
if (!this->operability_status_.isOperableAndSolvable()) {
this->operability_status_.use_vfpexplicit = true;
deferred_logger.debug("EXPLICIT_LOOKUP_VFP",
"well not operable, trying with explicit vfp lookup: " + this->name());
updateWellOperability(simulator, well_state, deferred_logger);
}
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
gliftBeginTimeStepWellTestIterateWellEquations(
const Simulator& simulator,
const double dt,
WellState& well_state,
const GroupState &group_state,
DeferredLogger& deferred_logger)
{
const auto& well_name = this->name();
assert(this->wellHasTHPConstraints(simulator.vanguard().summaryState()));
const auto& schedule = simulator.vanguard().schedule();
auto report_step_idx = simulator.episodeIndex();
const auto& glo = schedule.glo(report_step_idx);
if(glo.active() && glo.has_well(well_name)) {
const auto increment = glo.gaslift_increment();
auto alq = well_state.getALQ(well_name);
bool converged;
while (alq > 0) {
well_state.setALQ(well_name, alq);
if ((converged =
iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger)))
{
return converged;
}
alq -= increment;
}
return false;
}
else {
return iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
gliftBeginTimeStepWellTestUpdateALQ(const Simulator& simulator,
WellState& well_state,
DeferredLogger& deferred_logger)
{
const auto& summary_state = simulator.vanguard().summaryState();
const auto& well_name = this->name();
if (!this->wellHasTHPConstraints(summary_state)) {
const std::string msg = fmt::format("GLIFT WTEST: Well {} does not have THP constraints", well_name);
deferred_logger.info(msg);
return;
}
const auto& schedule = simulator.vanguard().schedule();
const auto report_step_idx = simulator.episodeIndex();
const auto& glo = schedule.glo(report_step_idx);
if (!glo.has_well(well_name)) {
const std::string msg = fmt::format(
"GLIFT WTEST: Well {} : Gas Lift not activated: "
"WLIFTOPT is probably missing. Skipping.", well_name);
deferred_logger.info(msg);
return;
}
const auto& gl_well = glo.well(well_name);
auto& max_alq_optional = gl_well.max_rate();
double max_alq;
if (max_alq_optional) {
max_alq = *max_alq_optional;
}
else {
const auto& well_ecl = this->wellEcl();
const auto& controls = well_ecl.productionControls(summary_state);
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const auto& alq_values = table.getALQAxis();
max_alq = alq_values.back();
}
well_state.setALQ(well_name, max_alq);
const std::string msg = fmt::format(
"GLIFT WTEST: Well {} : Setting ALQ to max value: {}",
well_name, max_alq);
deferred_logger.info(msg);
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellOperability(const Simulator& simulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
if (this->param_.local_well_solver_control_switching_) {
const bool success = updateWellOperabilityFromWellEq(simulator, well_state, deferred_logger);
if (success) {
return;
} else {
deferred_logger.debug("Operability check using well equations did not converge for well "
+ this->name() + ", reverting to classical approach." );
}
}
this->operability_status_.resetOperability();
bool thp_controlled = this->isInjector() ? well_state.well(this->index_of_well_).injection_cmode == Well::InjectorCMode::THP:
well_state.well(this->index_of_well_).production_cmode == Well::ProducerCMode::THP;
bool bhp_controlled = this->isInjector() ? well_state.well(this->index_of_well_).injection_cmode == Well::InjectorCMode::BHP:
well_state.well(this->index_of_well_).production_cmode == Well::ProducerCMode::BHP;
// Operability checking is not free
// Only check wells under BHP and THP control
bool check_thp = thp_controlled || this->operability_status_.thp_limit_violated_but_not_switched;
if (check_thp || bhp_controlled) {
updateIPR(simulator, deferred_logger);
checkOperabilityUnderBHPLimit(well_state, simulator, deferred_logger);
}
// we do some extra checking for wells under THP control.
if (check_thp) {
checkOperabilityUnderTHPLimit(simulator, well_state, deferred_logger);
}
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
updateWellOperabilityFromWellEq(const Simulator& simulator,
const WellState& well_state,
DeferredLogger& deferred_logger)
{
// only makes sense if we're using this parameter is true
assert(this->param_.local_well_solver_control_switching_);
this->operability_status_.resetOperability();
WellState well_state_copy = well_state;
const auto& group_state = simulator.problem().wellModel().groupState();
const double dt = simulator.timeStepSize();
// equations should be converged at this stage, so only one it is needed
bool converged = iterateWellEquations(simulator, dt, well_state_copy, group_state, deferred_logger);
return converged;
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellStateWithTarget(const Simulator& simulator,
const GroupState& group_state,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
// only bhp and wellRates are used to initilize the primaryvariables for standard wells
const auto& well = this->well_ecl_;
const int well_index = this->index_of_well_;
auto& ws = well_state.well(well_index);
const auto& pu = this->phaseUsage();
const int np = well_state.numPhases();
const auto& summaryState = simulator.vanguard().summaryState();
const auto& schedule = simulator.vanguard().schedule();
if (this->wellIsStopped()) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = 0;
}
ws.thp = 0;
return;
}
if (this->isInjector() )
{
const auto& controls = well.injectionControls(summaryState);
InjectorType injectorType = controls.injector_type;
int phasePos;
switch (injectorType) {
case InjectorType::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
break;
}
case InjectorType::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
break;
}
case InjectorType::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
break;
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Expected WATER, OIL or GAS as type for injectors " + this->name(), deferred_logger );
}
const auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::RATE:
{
ws.surface_rates[phasePos] = (1.0 - this->rsRvInj()) * controls.surface_rate;
if(this->rsRvInj() > 0) {
if (injectorType == InjectorType::OIL && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.surface_rate * this->rsRvInj();
} else if (injectorType == InjectorType::GAS && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.surface_rate * this->rsRvInj();
} else {
OPM_DEFLOG_THROW(std::runtime_error, "Expected OIL or GAS as type for injectors when RS/RV (item 10) is non-zero " + this->name(), deferred_logger );
}
}
break;
}
case Well::InjectorCMode::RESV:
{
std::vector<double> convert_coeff(this->number_of_phases_, 1.0);
this->rateConverter_.calcCoeff(/*fipreg*/ 0, this->pvtRegionIdx_, convert_coeff);
const double coeff = convert_coeff[phasePos];
ws.surface_rates[phasePos] = controls.reservoir_rate/coeff;
break;
}
case Well::InjectorCMode::THP:
{
auto rates = ws.surface_rates;
double bhp = WellBhpThpCalculator(*this).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
this->getRefDensity(),
deferred_logger);
ws.bhp = bhp;
ws.thp = this->getTHPConstraint(summaryState);
// if the total rates are negative or zero
// we try to provide a better intial well rate
// using the well potentials
double total_rate = std::accumulate(rates.begin(), rates.end(), 0.0);
if (total_rate <= 0.0)
ws.surface_rates = ws.well_potentials;
break;
}
case Well::InjectorCMode::BHP:
{
ws.bhp = controls.bhp_limit;
double total_rate = 0.0;
for (int p = 0; p<np; ++p) {
total_rate += ws.surface_rates[p];
}
// if the total rates are negative or zero
// we try to provide a better intial well rate
// using the well potentials
if (total_rate <= 0.0)
ws.surface_rates = ws.well_potentials;
break;
}
case Well::InjectorCMode::GRUP:
{
assert(well.isAvailableForGroupControl());
const auto& group = schedule.getGroup(well.groupName(), this->currentStep());
const double efficiencyFactor = well.getEfficiencyFactor();
std::optional<double> target =
this->getGroupInjectionTargetRate(group,
well_state,
group_state,
schedule,
summaryState,
injectorType,
efficiencyFactor,
deferred_logger);
if (target)
ws.surface_rates[phasePos] = *target;
break;
}
case Well::InjectorCMode::CMODE_UNDEFINED:
{
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + this->name(), deferred_logger );
}
}
// for wells with zero injection rate, if we assign exactly zero rate,
// we will have to assume some trivial composition in the wellbore.
// here, we use some small value (about 0.01 m^3/day ~= 1.e-7) to initialize
// the zero rate target, then we can use to retain the composition information
// within the wellbore from the previous result, and hopefully it is a good
// initial guess for the zero rate target.
ws.surface_rates[phasePos] = std::max(1.e-7, ws.surface_rates[phasePos]);
if (ws.bhp == 0.) {
ws.bhp = controls.bhp_limit;
}
}
//Producer
else
{
const auto current = ws.production_cmode;
const auto& controls = well.productionControls(summaryState);
switch (current) {
case Well::ProducerCMode::ORAT:
{
double current_rate = -ws.surface_rates[ pu.phase_pos[Oil] ];
// for trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (current_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= controls.oil_rate/current_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
double control_fraction = fractions[pu.phase_pos[Oil]];
if (control_fraction != 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * controls.oil_rate/control_fraction;
}
}
}
break;
}
case Well::ProducerCMode::WRAT:
{
double current_rate = -ws.surface_rates[ pu.phase_pos[Water] ];
// for trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (current_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= controls.water_rate/current_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
double control_fraction = fractions[pu.phase_pos[Water]];
if (control_fraction != 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * controls.water_rate/control_fraction;
}
}
}
break;
}
case Well::ProducerCMode::GRAT:
{
double current_rate = -ws.surface_rates[pu.phase_pos[Gas] ];
// or trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (current_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= controls.gas_rate/current_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
double control_fraction = fractions[pu.phase_pos[Gas]];
if (control_fraction != 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * controls.gas_rate/control_fraction;
}
}
}
break;
}
case Well::ProducerCMode::LRAT:
{
double current_rate = -ws.surface_rates[ pu.phase_pos[Water] ]
- ws.surface_rates[ pu.phase_pos[Oil] ];
// or trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (current_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= controls.liquid_rate/current_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
double control_fraction = fractions[pu.phase_pos[Water]] + fractions[pu.phase_pos[Oil]];
if (control_fraction != 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * controls.liquid_rate / control_fraction;
}
}
}
break;
}
case Well::ProducerCMode::CRAT:
{
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("CRAT control not supported, well {}", this->name()),
deferred_logger);
}
case Well::ProducerCMode::RESV:
{
std::vector<double> convert_coeff(this->number_of_phases_, 1.0);
this->rateConverter_.calcCoeff(/*fipreg*/ 0, this->pvtRegionIdx_, ws.surface_rates, convert_coeff);
double total_res_rate = 0.0;
for (int p = 0; p<np; ++p) {
total_res_rate -= ws.surface_rates[p] * convert_coeff[p];
}
if (controls.prediction_mode) {
// or trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (total_res_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= controls.resv_rate/total_res_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * controls.resv_rate / convert_coeff[p];
}
}
} else {
std::vector<double> hrates(this->number_of_phases_,0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
hrates[pu.phase_pos[Water]] = controls.water_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
}
std::vector<double> hrates_resv(this->number_of_phases_,0.);
this->rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, this->pvtRegionIdx_, hrates, hrates_resv);
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
// or trivial rates or opposite direction we don't just scale the rates
// but use either the potentials or the mobility ratio to initial the well rates
if (total_res_rate > 0.0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= target/total_res_rate;
}
} else {
const std::vector<double> fractions = initialWellRateFractions(simulator, well_state);
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = - fractions[p] * target / convert_coeff[p];
}
}
}
break;
}
case Well::ProducerCMode::BHP:
{
ws.bhp = controls.bhp_limit;
double total_rate = 0.0;
for (int p = 0; p<np; ++p) {
total_rate -= ws.surface_rates[p];
}
// if the total rates are negative or zero
// we try to provide a better intial well rate
// using the well potentials
if (total_rate <= 0.0){
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] = -ws.well_potentials[p];
}
}
break;
}
case Well::ProducerCMode::THP:
{
const bool update_success = updateWellStateWithTHPTargetProd(simulator, well_state, deferred_logger);
if (!update_success) {
// the following is the original way of initializing well state with THP constraint
// keeping it for robust reason in case that it fails to get a bhp value with THP constraint
// more sophisticated design might be needed in the future
auto rates = ws.surface_rates;
this->adaptRatesForVFP(rates);
const double bhp = WellBhpThpCalculator(*this).calculateBhpFromThp(
well_state, rates, well, summaryState, this->getRefDensity(), deferred_logger);
ws.bhp = bhp;
ws.thp = this->getTHPConstraint(summaryState);
// if the total rates are negative or zero
// we try to provide a better initial well rate
// using the well potentials
const double total_rate = -std::accumulate(rates.begin(), rates.end(), 0.0);
if (total_rate <= 0.0) {
for (int p = 0; p < this->number_of_phases_; ++p) {
ws.surface_rates[p] = -ws.well_potentials[p];
}
}
}
break;
}
case Well::ProducerCMode::GRUP:
{
assert(well.isAvailableForGroupControl());
const auto& group = schedule.getGroup(well.groupName(), this->currentStep());
const double efficiencyFactor = well.getEfficiencyFactor();
double scale = this->getGroupProductionTargetRate(group,
well_state,
group_state,
schedule,
summaryState,
efficiencyFactor,
deferred_logger);
// we don't want to scale with zero and get zero rates.
if (scale > 0) {
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= scale;
}
ws.trivial_target = false;
} else {
ws.trivial_target = true;
}
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED:
case Well::ProducerCMode::NONE:
{
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + this->name() , deferred_logger);
}
break;
} // end of switch
if (ws.bhp == 0.) {
ws.bhp = controls.bhp_limit;
}
}
}
template<typename TypeTag>
std::vector<double>
WellInterface<TypeTag>::
initialWellRateFractions(const Simulator& simulator, const WellState& well_state) const
{
const int np = this->number_of_phases_;
std::vector<double> scaling_factor(np);
const auto& ws = well_state.well(this->index_of_well_);
double total_potentials = 0.0;
for (int p = 0; p<np; ++p) {
total_potentials += ws.well_potentials[p];
}
if (total_potentials > 0) {
for (int p = 0; p<np; ++p) {
scaling_factor[p] = ws.well_potentials[p] / total_potentials;
}
return scaling_factor;
}
// if we don't have any potentials we weight it using the mobilites
// We only need approximation so we don't bother with the vapporized oil and dissolved gas
double total_tw = 0;
const int nperf = this->number_of_perforations_;
for (int perf = 0; perf < nperf; ++perf) {
total_tw += this->well_index_[perf];
}
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double well_tw_fraction = this->well_index_[perf] / total_tw;
double total_mobility = 0.0;
for (int p = 0; p < np; ++p) {
int modelPhaseIdx = this->flowPhaseToModelPhaseIdx(p);
total_mobility += fs.invB(modelPhaseIdx).value() * intQuants.mobility(modelPhaseIdx).value();
}
for (int p = 0; p < np; ++p) {
int modelPhaseIdx = this->flowPhaseToModelPhaseIdx(p);
scaling_factor[p] += well_tw_fraction * fs.invB(modelPhaseIdx).value() * intQuants.mobility(modelPhaseIdx).value() / total_mobility;
}
}
return scaling_factor;
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
updateWellStateRates(const Simulator& simulator,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
// Check if the rates of this well only are single-phase, do nothing
// if more than one nonzero rate.
auto& ws = well_state.well(this->index_of_well_);
int nonzero_rate_index = -1;
const double floating_point_error_epsilon = 1e-14;
for (int p = 0; p < this->number_of_phases_; ++p) {
if (std::abs(ws.surface_rates[p]) > floating_point_error_epsilon) {
if (nonzero_rate_index == -1) {
nonzero_rate_index = p;
} else {
// More than one nonzero rate.
return;
}
}
}
// Calculate the rates that follow from the current primary variables.
std::vector<double> well_q_s = computeCurrentWellRates(simulator, deferred_logger);
if (nonzero_rate_index == -1) {
// No nonzero rates.
// Use the computed rate directly
for (int p = 0; p < this->number_of_phases_; ++p) {
ws.surface_rates[p] = well_q_s[this->flowPhaseToModelCompIdx(p)];
}
return;
}
// Set the currently-zero phase flows to be nonzero in proportion to well_q_s.
const double initial_nonzero_rate = ws.surface_rates[nonzero_rate_index];
const int comp_idx_nz = this->flowPhaseToModelCompIdx(nonzero_rate_index);
if (std::abs(well_q_s[comp_idx_nz]) > floating_point_error_epsilon) {
for (int p = 0; p < this->number_of_phases_; ++p) {
if (p != nonzero_rate_index) {
const int comp_idx = this->flowPhaseToModelCompIdx(p);
double& rate = ws.surface_rates[p];
rate = (initial_nonzero_rate / well_q_s[comp_idx_nz]) * (well_q_s[comp_idx]);
}
}
}
}
template <typename TypeTag>
std::vector<double>
WellInterface<TypeTag>::
wellIndex(const int perf,
const IntensiveQuantities& intQuants,
const double trans_mult,
const SingleWellState& ws) const
{
// Add a Forchheimer term to the gas phase CTF if the run uses
// either of the WDFAC or the WDFACCOR keywords.
auto wi = std::vector<Scalar>
(this->num_components_, this->well_index_[perf] * trans_mult);
if constexpr (! Indices::gasEnabled) {
return wi;
}
const auto& wdfac = this->well_ecl_.getWDFAC();
if (! wdfac.useDFactor() || (this->well_index_[perf] == 0.0)) {
return wi;
}
const double d = this->computeConnectionDFactor(perf, intQuants, ws);
if (d < 1.0e-15) {
return wi;
}
// Solve quadratic equations for connection rates satisfying the ipr and the flow-dependent skin.
// If more than one solution, pick the one corresponding to lowest absolute rate (smallest skin).
const auto& connection = this->well_ecl_.getConnections()[ws.perf_data.ecl_index[perf]];
const double Kh = connection.Kh();
const double scaling = 3.141592653589 * Kh * connection.wpimult();
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const double connection_pressure = ws.perf_data.pressure[perf];
const double cell_pressure = getValue(intQuants.fluidState().pressure(FluidSystem::gasPhaseIdx));
const double drawdown = cell_pressure - connection_pressure;
const double invB = getValue(intQuants.fluidState().invB(FluidSystem::gasPhaseIdx));
const double mob_g = getValue(intQuants.mobility(FluidSystem::gasPhaseIdx)) * invB;
const double a = d;
const double b = 2*scaling/wi[gas_comp_idx];
const double c = -2*scaling*mob_g*drawdown;
double consistent_Q = -1.0e20;
// Find and check negative solutions (a --> -a)
const double r2n = b*b + 4*a*c;
if (r2n >= 0) {
const double rn = std::sqrt(r2n);
const double xn1 = (b-rn)*0.5/a;
if (xn1 <= 0) {
consistent_Q = xn1;
}
const double xn2 = (b+rn)*0.5/a;
if (xn2 <= 0 && xn2 > consistent_Q) {
consistent_Q = xn2;
}
}
// Find and check positive solutions
consistent_Q *= -1;
const double r2p = b*b - 4*a*c;
if (r2p >= 0) {
const double rp = std::sqrt(r2p);
const double xp1 = (rp-b)*0.5/a;
if (xp1 > 0 && xp1 < consistent_Q) {
consistent_Q = xp1;
}
const double xp2 = -(rp+b)*0.5/a;
if (xp2 > 0 && xp2 < consistent_Q) {
consistent_Q = xp2;
}
}
wi[gas_comp_idx] = 1.0/(1.0/(trans_mult * this->well_index_[perf]) + (consistent_Q/2 * d / scaling));
return wi;
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
updateConnectionDFactor(const Simulator& simulator, SingleWellState& ws) const
{
if (! this->well_ecl_.getWDFAC().useDFactor()) {
return;
}
auto& d_factor = ws.perf_data.connection_d_factor;
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/ 0);
d_factor[perf] = this->computeConnectionDFactor(perf, intQuants, ws);
}
}
template <typename TypeTag>
double
WellInterface<TypeTag>::
computeConnectionDFactor(const int perf,
const IntensiveQuantities& intQuants,
const SingleWellState& ws) const
{
auto rhoGS = [regIdx = this->pvtRegionIdx()]() {
return FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regIdx);
};
// Viscosity is evaluated at connection pressure.
auto gas_visc = [connection_pressure = ws.perf_data.pressure[perf],
temperature = ws.temperature,
regIdx = this->pvtRegionIdx(), &intQuants]()
{
const auto rv = getValue(intQuants.fluidState().Rv());
const auto& gasPvt = FluidSystem::gasPvt();
// Note that rv here is from grid block with typically
// p_block > connection_pressure
// so we may very well have rv > rv_sat
const double rv_sat = gasPvt.saturatedOilVaporizationFactor
(regIdx, temperature, connection_pressure);
if (! (rv < rv_sat)) {
return gasPvt.saturatedViscosity(regIdx, temperature,
connection_pressure);
}
return gasPvt.viscosity(regIdx, temperature, connection_pressure,
rv, getValue(intQuants.fluidState().Rvw()));
};
const auto& connection = this->well_ecl_.getConnections()
[ws.perf_data.ecl_index[perf]];
return this->well_ecl_.getWDFAC().getDFactor(rhoGS, gas_visc, connection);
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
updateConnectionTransmissibilityFactor(const Simulator& simulator, SingleWellState& ws) const
{
auto connCF = [&connIx = std::as_const(ws.perf_data.ecl_index),
&conns = this->well_ecl_.getConnections()]
(const int perf)
{
return conns[connIx[perf]].CF();
};
auto& tmult = ws.perf_data.connection_compaction_tmult;
auto& ctf = ws.perf_data.connection_transmissibility_factor;
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
const int cell_idx = this->well_cells_[perf];
const auto& intQuants = simulator.model()
.intensiveQuantities(cell_idx, /*timeIdx=*/ 0);
tmult[perf] = simulator.problem()
.template wellTransMultiplier<double>(intQuants, cell_idx);
ctf[perf] = connCF(perf) * tmult[perf];
}
}
template<typename TypeTag>
typename WellInterface<TypeTag>::Eval
WellInterface<TypeTag>::getPerfCellPressure(const typename WellInterface<TypeTag>::FluidState& fs) const
{
if constexpr (Indices::oilEnabled) {
return fs.pressure(FluidSystem::oilPhaseIdx);
} else if constexpr (Indices::gasEnabled) {
return fs.pressure(FluidSystem::gasPhaseIdx);
} else {
return fs.pressure(FluidSystem::waterPhaseIdx);
}
}
template <typename TypeTag>
template<class Value, class Callback>
void
WellInterface<TypeTag>::
getMobility(const Simulator& simulator,
const int perf,
std::vector<Value>& mob,
Callback& extendEval,
[[maybe_unused]] DeferredLogger& deferred_logger) const
{
auto relpermArray = []()
{
if constexpr (std::is_same_v<Value, Scalar>) {
return std::array<Scalar,3>{};
} else {
return std::array<Eval,3>{};
}
};
const int cell_idx = this->well_cells_[perf];
assert (int(mob.size()) == this->num_components_);
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/0);
const auto& materialLawManager = simulator.problem().materialLawManager();
// either use mobility of the perforation cell or calculate its own
// based on passing the saturation table index
const int satid = this->saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if (satid == satid_elem) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
}
if constexpr (has_solvent) {
mob[Indices::contiSolventEqIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
auto relativePerms = relpermArray();
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if constexpr (has_solvent) {
OPM_DEFLOG_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent", deferred_logger);
}
}
if (this->isInjector() && !this->inj_fc_multiplier_.empty()) {
const auto perf_ecl_index = this->perforationData()[perf].ecl_index;
const auto& connections = this->well_ecl_.getConnections();
const auto& connection = connections[perf_ecl_index];
if (connection.filterCakeActive()) {
for (auto& val : mob) {
val *= this->inj_fc_multiplier_[perf];
}
}
}
}
template<typename TypeTag>
bool
WellInterface<TypeTag>::
updateWellStateWithTHPTargetProd(const Simulator& simulator,
WellState& well_state,
DeferredLogger& deferred_logger) const
{
const auto& summary_state = simulator.vanguard().summaryState();
auto bhp_at_thp_limit = computeBhpAtThpLimitProdWithAlq(
simulator, summary_state, this->getALQ(well_state), deferred_logger);
if (bhp_at_thp_limit) {
std::vector<double> rates(this->number_of_phases_, 0.0);
if (thp_update_iterations) {
computeWellRatesWithBhpIterations(simulator, *bhp_at_thp_limit,
rates, deferred_logger);
} else {
computeWellRatesWithBhp(simulator, *bhp_at_thp_limit,
rates, deferred_logger);
}
auto& ws = well_state.well(this->name());
ws.surface_rates = rates;
ws.bhp = *bhp_at_thp_limit;
ws.thp = this->getTHPConstraint(summary_state);
return true;
} else {
return false;
}
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
computeConnLevelProdInd(const FluidState& fs,
const std::function<double(const double)>& connPICalc,
const std::vector<Scalar>& mobility,
double* connPI) const
{
const auto& pu = this->phaseUsage();
const int np = this->number_of_phases_;
for (int p = 0; p < np; ++p) {
// Note: E100's notion of PI value phase mobility includes
// the reciprocal FVF.
const auto connMob =
mobility[this->flowPhaseToModelCompIdx(p)]
* fs.invB(this->flowPhaseToModelPhaseIdx(p)).value();
connPI[p] = connPICalc(connMob);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
{
const auto io = pu.phase_pos[Oil];
const auto ig = pu.phase_pos[Gas];
const auto vapoil = connPI[ig] * fs.Rv().value();
const auto disgas = connPI[io] * fs.Rs().value();
connPI[io] += vapoil;
connPI[ig] += disgas;
}
}
template <typename TypeTag>
void
WellInterface<TypeTag>::
computeConnLevelInjInd(const FluidState& fs,
const Phase preferred_phase,
const std::function<double(const double)>& connIICalc,
const std::vector<Scalar>& mobility,
double* connII,
DeferredLogger& deferred_logger) const
{
// Assumes single phase injection
const auto& pu = this->phaseUsage();
auto phase_pos = 0;
if (preferred_phase == Phase::GAS) {
phase_pos = pu.phase_pos[Gas];
}
else if (preferred_phase == Phase::OIL) {
phase_pos = pu.phase_pos[Oil];
}
else if (preferred_phase == Phase::WATER) {
phase_pos = pu.phase_pos[Water];
}
else {
OPM_DEFLOG_THROW(NotImplemented,
fmt::format("Unsupported Injector Type ({}) "
"for well {} during connection I.I. calculation",
static_cast<int>(preferred_phase), this->name()),
deferred_logger);
}
const auto mt = std::accumulate(mobility.begin(), mobility.end(), 0.0);
connII[phase_pos] = connIICalc(mt * fs.invB(this->flowPhaseToModelPhaseIdx(phase_pos)).value());
}
} // namespace Opm