opm-simulators/opm/simulators/wells/StandardWellEval.cpp
2024-02-23 08:20:14 +01:00

240 lines
9.7 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellEval.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellConvergence.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#include <cmath>
#include <cstddef>
namespace Opm
{
template<class FluidSystem, class Indices, class Scalar>
StandardWellEval<FluidSystem,Indices,Scalar>::
StandardWellEval(const WellInterfaceIndices<FluidSystem,Indices,Scalar>& baseif)
: baseif_(baseif)
, primary_variables_(baseif_)
, F0_(numWellConservationEq)
, linSys_(baseif_.parallelWellInfo())
, connections_(baseif)
{
}
template<class FluidSystem, class Indices, class Scalar>
typename StandardWellEval<FluidSystem,Indices,Scalar>::EvalWell
StandardWellEval<FluidSystem,Indices,Scalar>::
extendEval(const Eval& in) const
{
EvalWell out(primary_variables_.numWellEq() + Indices::numEq, in.value());
for(int eqIdx = 0; eqIdx < Indices::numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
updateWellStateFromPrimaryVariables(const bool stop_or_zero_rate_target,
WellState& well_state,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
this->primary_variables_.copyToWellState(well_state, deferred_logger);
WellBhpThpCalculator(baseif_).
updateThp(connections_.rho(),
stop_or_zero_rate_target,
[this,&well_state]() { return this->baseif_.getALQ(well_state); },
{FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)},
well_state, summary_state, deferred_logger);
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
computeAccumWell()
{
for (std::size_t eq_idx = 0; eq_idx < F0_.size(); ++eq_idx) {
F0_[eq_idx] = this->primary_variables_.surfaceVolumeFraction(eq_idx).value();
}
}
template<class FluidSystem, class Indices, class Scalar>
ConvergenceReport
StandardWellEval<FluidSystem,Indices,Scalar>::
getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
const double maxResidualAllowed,
const double tol_wells,
const double relaxed_tolerance_flow,
const bool relax_tolerance,
const bool well_is_stopped,
std::vector<double>& res,
DeferredLogger& deferred_logger) const
{
res.resize(this->primary_variables_.numWellEq());
for (int eq_idx = 0; eq_idx < this->primary_variables_.numWellEq(); ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(this->linSys_.residual()[0][eq_idx]);
}
std::vector<double> well_flux_residual(baseif_.numComponents());
// Finish computation
for (int compIdx = 0; compIdx < baseif_.numComponents(); ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
}
ConvergenceReport report;
using CR = ConvergenceReport;
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
// checking if any NaN or too large residuals found
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
if (std::isnan(well_flux_residual[compIdx])) {
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, baseif_.name()});
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, baseif_.name()});
} else if (!relax_tolerance && well_flux_residual[compIdx] > tol_wells) {
report.setWellFailed({type, CR::Severity::Normal, compIdx, baseif_.name()});
} else if (well_flux_residual[compIdx] > relaxed_tolerance_flow) {
report.setWellFailed({type, CR::Severity::Normal, compIdx, baseif_.name()});
}
}
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{1.e3, 1.e4, 1.e-4, 1.e-6, maxResidualAllowed},
std::abs(this->linSys_.residual()[0][Bhp]),
well_is_stopped,
report,
deferred_logger);
// for stopped well, we do not enforce the following checking to avoid dealing with sign of near-zero values
// for BHP or THP controlled wells, we need to make sure the flow direction is correct
if (!well_is_stopped && baseif_.isPressureControlled(well_state)) {
// checking the flow direction
const double sign = baseif_.isProducer() ? -1. : 1.;
const auto weight_total_flux = this->primary_variables_.value(PrimaryVariables::WQTotal) * sign;
constexpr int dummy_phase = -1;
if (weight_total_flux < 0.) {
report.setWellFailed(
{CR::WellFailure::Type::WrongFlowDirection, CR::Severity::Normal, dummy_phase, baseif_.name()});
}
}
return report;
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
init(std::vector<double>& perf_depth,
const std::vector<double>& depth_arg,
const int num_cells,
const bool has_polymermw)
{
perf_depth.resize(baseif_.numPerfs(), 0.);
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
perf_depth[perf] = depth_arg[cell_idx];
}
// counting/updating primary variable numbers
int numWellEq = primary_variables_.numWellEq();
if (has_polymermw) {
if (baseif_.isInjector()) {
// adding a primary variable for water perforation rate per connection
numWellEq += baseif_.numPerfs();
// adding a primary variable for skin pressure per connection
numWellEq += baseif_.numPerfs();
}
}
// with the updated numWellEq, we can initialize the primary variables and matrices now
primary_variables_.resize(numWellEq);
// setup sparsity pattern for the matrices
this->linSys_.init(num_cells, numWellEq, baseif_.numPerfs(), baseif_.cells());
}
#define INSTANCE(...) \
template class StandardWellEval<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<1u,0u,0u,0u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>)
}