opm-simulators/opm/simulators/timestepping/AdaptiveTimeStepping_impl.hpp

209 lines
8.1 KiB
C++

/*
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ADAPTIVETIMESTEPPING_IMPL_HEADER_INCLUDED
#define OPM_ADAPTIVETIMESTEPPING_IMPL_HEADER_INCLUDED
#include <iostream>
#include <string>
#include <utility>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/AdaptiveSimulatorTimer.hpp>
#include <opm/core/simulator/PIDTimeStepControl.hpp>
namespace Opm {
// AdaptiveTimeStepping
//---------------------
AdaptiveTimeStepping::AdaptiveTimeStepping( const parameter::ParameterGroup& param )
: timeStepControl_()
, initial_fraction_( param.getDefault("solver.initialfraction", double(0.25) ) )
, restart_factor_( param.getDefault("solver.restartfactor", double(0.1) ) )
, growth_factor_( param.getDefault("solver.growthfactor", double(1.25) ) )
, solver_restart_max_( param.getDefault("solver.restart", int(3) ) )
, solver_verbose_( param.getDefault("solver.verbose", bool(false) ) )
, timestep_verbose_( param.getDefault("timestep.verbose", bool(false) ) )
, last_timestep_( -1.0 )
{
// valid are "pid" and "pid+iteration"
std::string control = param.getDefault("timestep.control", std::string("pid") );
const double tol = param.getDefault("timestep.control.tol", double(1e-3) );
if( control == "pid" ) {
timeStepControl_ = TimeStepControlType( new PIDTimeStepControl( tol ) );
}
else if ( control == "pid+iteration" )
{
const int iterations = param.getDefault("timestep.control.targetiteration", int(25) );
const double maxgrowth = param.getDefault("timestep.control.maxgrowth", double(3.0) );
timeStepControl_ = TimeStepControlType( new PIDAndIterationCountTimeStepControl( iterations, tol, maxgrowth ) );
}
else
OPM_THROW(std::runtime_error,"Unsupported time step control selected "<< control );
// make sure growth factor is something reasonable
assert( growth_factor_ >= 1.0 );
}
template <class Solver, class State, class WellState>
void AdaptiveTimeStepping::
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state )
{
stepImpl( simulatorTimer, solver, state, well_state );
}
template <class Solver, class State, class WellState>
void AdaptiveTimeStepping::
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state,
OutputWriter& outputWriter )
{
stepImpl( simulatorTimer, solver, state, well_state, &outputWriter );
}
// implementation of the step method
template <class Solver, class State, class WState>
void AdaptiveTimeStepping::
stepImpl( const SimulatorTimer& simulatorTimer,
Solver& solver, State& state, WState& well_state,
OutputWriter* outputWriter )
{
const double timestep = simulatorTimer.currentStepLength();
// init last time step as a fraction of the given time step
if( last_timestep_ < 0 ) {
last_timestep_ = initial_fraction_ * timestep;
}
// create adaptive step timer with previously used sub step size
AdaptiveSimulatorTimer substepTimer( simulatorTimer, last_timestep_ );
// copy states in case solver has to be restarted (to be revised)
State last_state( state );
WState last_well_state( well_state );
// counter for solver restarts
int restarts = 0;
// sub step time loop
while( ! substepTimer.done() )
{
// get current delta t
const double dt = substepTimer.currentStepLength() ;
// initialize time step control in case current state is needed later
timeStepControl_->initialize( state );
int linearIterations = -1;
try {
// (linearIterations < 0 means on convergence in solver)
linearIterations = solver.step( dt, state, well_state);
if( solver_verbose_ ) {
// report number of linear iterations
std::cout << "Overall linear iterations used: " << linearIterations << std::endl;
}
}
catch (const Opm::NumericalProblem& e) {
std::cerr << e.what() << std::endl;
// since linearIterations is < 0 this will restart the solver
}
catch (const std::runtime_error& e) {
std::cerr << e.what() << std::endl;
// also catch linear solver not converged
}
// (linearIterations < 0 means no convergence in solver)
if( linearIterations >= 0 )
{
// advance by current dt
++substepTimer;
// compute new time step estimate
double dtEstimate =
timeStepControl_->computeTimeStepSize( dt, linearIterations, state );
// avoid time step size growth
if( restarts > 0 ) {
dtEstimate = std::min( growth_factor_ * dt, dtEstimate );
// solver converged, reset restarts counter
restarts = 0;
}
if( timestep_verbose_ )
{
std::cout << std::endl
<<"Substep( " << substepTimer.currentStepNum()
<< " ): Current time (days) " << unit::convert::to(substepTimer.simulationTimeElapsed(),unit::day) << std::endl
<< " Current stepsize est (days) " << unit::convert::to(dtEstimate, unit::day) << std::endl;
}
// write data if outputWriter was provided
if( outputWriter ) {
outputWriter->writeTimeStep( substepTimer, state, well_state );
}
// set new time step length
substepTimer.provideTimeStepEstimate( dtEstimate );
// update states
last_state = state ;
last_well_state = well_state;
}
else // in case of no convergence (linearIterations < 0)
{
// increase restart counter
if( restarts >= solver_restart_max_ ) {
OPM_THROW(Opm::NumericalProblem,"Solver failed to converge after " << restarts << " restarts.");
}
const double newTimeStep = restart_factor_ * dt;
// we need to revise this
substepTimer.provideTimeStepEstimate( newTimeStep );
if( solver_verbose_ )
std::cerr << "Solver convergence failed, restarting solver with new time step ("
<< unit::convert::to( newTimeStep, unit::day ) <<" days)." << std::endl;
// reset states
state = last_state;
well_state = last_well_state;
++restarts;
}
}
// store max of the small time step for next reportStep
last_timestep_ = substepTimer.maxStepLength();
if( timestep_verbose_ )
{
substepTimer.report( std::cout );
std::cout << "Suggested next step size = " << unit::convert::to( last_timestep_, unit::day ) << " (days)" << std::endl;
}
if( ! std::isfinite( last_timestep_ ) ) { // check for NaN
last_timestep_ = timestep;
}
}
}
#endif