mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-14 22:13:25 -06:00
209 lines
8.1 KiB
C++
209 lines
8.1 KiB
C++
/*
|
|
Copyright 2014 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef OPM_ADAPTIVETIMESTEPPING_IMPL_HEADER_INCLUDED
|
|
#define OPM_ADAPTIVETIMESTEPPING_IMPL_HEADER_INCLUDED
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include <opm/core/simulator/SimulatorTimer.hpp>
|
|
#include <opm/core/simulator/AdaptiveSimulatorTimer.hpp>
|
|
#include <opm/core/simulator/PIDTimeStepControl.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
// AdaptiveTimeStepping
|
|
//---------------------
|
|
|
|
AdaptiveTimeStepping::AdaptiveTimeStepping( const parameter::ParameterGroup& param )
|
|
: timeStepControl_()
|
|
, initial_fraction_( param.getDefault("solver.initialfraction", double(0.25) ) )
|
|
, restart_factor_( param.getDefault("solver.restartfactor", double(0.1) ) )
|
|
, growth_factor_( param.getDefault("solver.growthfactor", double(1.25) ) )
|
|
, solver_restart_max_( param.getDefault("solver.restart", int(3) ) )
|
|
, solver_verbose_( param.getDefault("solver.verbose", bool(false) ) )
|
|
, timestep_verbose_( param.getDefault("timestep.verbose", bool(false) ) )
|
|
, last_timestep_( -1.0 )
|
|
{
|
|
// valid are "pid" and "pid+iteration"
|
|
std::string control = param.getDefault("timestep.control", std::string("pid") );
|
|
|
|
const double tol = param.getDefault("timestep.control.tol", double(1e-3) );
|
|
if( control == "pid" ) {
|
|
timeStepControl_ = TimeStepControlType( new PIDTimeStepControl( tol ) );
|
|
}
|
|
else if ( control == "pid+iteration" )
|
|
{
|
|
const int iterations = param.getDefault("timestep.control.targetiteration", int(25) );
|
|
const double maxgrowth = param.getDefault("timestep.control.maxgrowth", double(3.0) );
|
|
timeStepControl_ = TimeStepControlType( new PIDAndIterationCountTimeStepControl( iterations, tol, maxgrowth ) );
|
|
}
|
|
else
|
|
OPM_THROW(std::runtime_error,"Unsupported time step control selected "<< control );
|
|
|
|
// make sure growth factor is something reasonable
|
|
assert( growth_factor_ >= 1.0 );
|
|
}
|
|
|
|
|
|
template <class Solver, class State, class WellState>
|
|
void AdaptiveTimeStepping::
|
|
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state )
|
|
{
|
|
stepImpl( simulatorTimer, solver, state, well_state );
|
|
}
|
|
|
|
template <class Solver, class State, class WellState>
|
|
void AdaptiveTimeStepping::
|
|
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state,
|
|
OutputWriter& outputWriter )
|
|
{
|
|
stepImpl( simulatorTimer, solver, state, well_state, &outputWriter );
|
|
}
|
|
|
|
// implementation of the step method
|
|
template <class Solver, class State, class WState>
|
|
void AdaptiveTimeStepping::
|
|
stepImpl( const SimulatorTimer& simulatorTimer,
|
|
Solver& solver, State& state, WState& well_state,
|
|
OutputWriter* outputWriter )
|
|
{
|
|
const double timestep = simulatorTimer.currentStepLength();
|
|
|
|
// init last time step as a fraction of the given time step
|
|
if( last_timestep_ < 0 ) {
|
|
last_timestep_ = initial_fraction_ * timestep;
|
|
}
|
|
|
|
// create adaptive step timer with previously used sub step size
|
|
AdaptiveSimulatorTimer substepTimer( simulatorTimer, last_timestep_ );
|
|
|
|
// copy states in case solver has to be restarted (to be revised)
|
|
State last_state( state );
|
|
WState last_well_state( well_state );
|
|
|
|
// counter for solver restarts
|
|
int restarts = 0;
|
|
|
|
// sub step time loop
|
|
while( ! substepTimer.done() )
|
|
{
|
|
// get current delta t
|
|
const double dt = substepTimer.currentStepLength() ;
|
|
|
|
// initialize time step control in case current state is needed later
|
|
timeStepControl_->initialize( state );
|
|
|
|
int linearIterations = -1;
|
|
try {
|
|
// (linearIterations < 0 means on convergence in solver)
|
|
linearIterations = solver.step( dt, state, well_state);
|
|
|
|
if( solver_verbose_ ) {
|
|
// report number of linear iterations
|
|
std::cout << "Overall linear iterations used: " << linearIterations << std::endl;
|
|
}
|
|
}
|
|
catch (const Opm::NumericalProblem& e) {
|
|
std::cerr << e.what() << std::endl;
|
|
// since linearIterations is < 0 this will restart the solver
|
|
}
|
|
catch (const std::runtime_error& e) {
|
|
std::cerr << e.what() << std::endl;
|
|
// also catch linear solver not converged
|
|
}
|
|
|
|
// (linearIterations < 0 means no convergence in solver)
|
|
if( linearIterations >= 0 )
|
|
{
|
|
// advance by current dt
|
|
++substepTimer;
|
|
|
|
// compute new time step estimate
|
|
double dtEstimate =
|
|
timeStepControl_->computeTimeStepSize( dt, linearIterations, state );
|
|
|
|
// avoid time step size growth
|
|
if( restarts > 0 ) {
|
|
dtEstimate = std::min( growth_factor_ * dt, dtEstimate );
|
|
// solver converged, reset restarts counter
|
|
restarts = 0;
|
|
}
|
|
|
|
if( timestep_verbose_ )
|
|
{
|
|
std::cout << std::endl
|
|
<<"Substep( " << substepTimer.currentStepNum()
|
|
<< " ): Current time (days) " << unit::convert::to(substepTimer.simulationTimeElapsed(),unit::day) << std::endl
|
|
<< " Current stepsize est (days) " << unit::convert::to(dtEstimate, unit::day) << std::endl;
|
|
}
|
|
|
|
// write data if outputWriter was provided
|
|
if( outputWriter ) {
|
|
outputWriter->writeTimeStep( substepTimer, state, well_state );
|
|
}
|
|
|
|
// set new time step length
|
|
substepTimer.provideTimeStepEstimate( dtEstimate );
|
|
|
|
// update states
|
|
last_state = state ;
|
|
last_well_state = well_state;
|
|
|
|
}
|
|
else // in case of no convergence (linearIterations < 0)
|
|
{
|
|
// increase restart counter
|
|
if( restarts >= solver_restart_max_ ) {
|
|
OPM_THROW(Opm::NumericalProblem,"Solver failed to converge after " << restarts << " restarts.");
|
|
}
|
|
|
|
const double newTimeStep = restart_factor_ * dt;
|
|
// we need to revise this
|
|
substepTimer.provideTimeStepEstimate( newTimeStep );
|
|
if( solver_verbose_ )
|
|
std::cerr << "Solver convergence failed, restarting solver with new time step ("
|
|
<< unit::convert::to( newTimeStep, unit::day ) <<" days)." << std::endl;
|
|
|
|
// reset states
|
|
state = last_state;
|
|
well_state = last_well_state;
|
|
|
|
++restarts;
|
|
}
|
|
}
|
|
|
|
|
|
// store max of the small time step for next reportStep
|
|
last_timestep_ = substepTimer.maxStepLength();
|
|
if( timestep_verbose_ )
|
|
{
|
|
substepTimer.report( std::cout );
|
|
std::cout << "Suggested next step size = " << unit::convert::to( last_timestep_, unit::day ) << " (days)" << std::endl;
|
|
}
|
|
|
|
if( ! std::isfinite( last_timestep_ ) ) { // check for NaN
|
|
last_timestep_ = timestep;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|