mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-08 15:33:02 -06:00
160 lines
5.9 KiB
C++
160 lines
5.9 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::DiscreteFractureLocalResidual
|
|
*/
|
|
#ifndef EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
|
|
#define EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
|
|
|
|
#include <ewoms/models/immiscible/immisciblelocalresidual.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup DiscreteFractureModel
|
|
*
|
|
* \brief Calculates the local residual of the discrete fracture
|
|
* immiscible multi-phase model.
|
|
*/
|
|
template <class TypeTag>
|
|
class DiscreteFractureLocalResidual : public ImmiscibleLocalResidual<TypeTag>
|
|
{
|
|
typedef ImmiscibleLocalResidual<TypeTag> ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
|
|
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
|
|
|
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Adds the amount all conservation quantities (e.g. phase
|
|
* mass) within a single fluid phase
|
|
*
|
|
* \copydetails Doxygen::storageParam
|
|
* \copydetails Doxygen::dofCtxParams
|
|
* \copydetails Doxygen::phaseIdxParam
|
|
*/
|
|
void addPhaseStorage(EqVector& storage,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx,
|
|
unsigned phaseIdx) const
|
|
{
|
|
EqVector phaseStorage(0.0);
|
|
ParentType::addPhaseStorage(phaseStorage, elemCtx, dofIdx, timeIdx, phaseIdx);
|
|
|
|
const auto& problem = elemCtx.problem();
|
|
const auto& fractureMapper = problem.fractureMapper();
|
|
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
|
|
|
if (!fractureMapper.isFractureVertex(globalIdx)) {
|
|
// don't do anything in addition to the immiscible model for degrees of
|
|
// freedom that do not feature fractures
|
|
storage += phaseStorage;
|
|
return;
|
|
}
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
|
const auto& scv = elemCtx.stencil(timeIdx).subControlVolume(dofIdx);
|
|
|
|
// reduce the matrix storage by the fracture volume
|
|
phaseStorage *= 1 - intQuants.fractureVolume()/scv.volume();
|
|
|
|
// add the storage term inside the fractures
|
|
const auto& fsFracture = intQuants.fractureFluidState();
|
|
|
|
phaseStorage[conti0EqIdx + phaseIdx] +=
|
|
intQuants.fracturePorosity()*
|
|
fsFracture.saturation(phaseIdx) *
|
|
fsFracture.density(phaseIdx) *
|
|
intQuants.fractureVolume()/scv.volume();
|
|
|
|
EnergyModule::addFracturePhaseStorage(phaseStorage, intQuants, scv,
|
|
phaseIdx);
|
|
|
|
// add the result to the overall storage term
|
|
storage += phaseStorage;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeFlux
|
|
*/
|
|
void computeFlux(RateVector& flux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
ParentType::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
|
|
unsigned i = extQuants.interiorIndex();
|
|
unsigned j = extQuants.exteriorIndex();
|
|
unsigned I = elemCtx.globalSpaceIndex(i, timeIdx);
|
|
unsigned J = elemCtx.globalSpaceIndex(j, timeIdx);
|
|
const auto& fractureMapper = elemCtx.problem().fractureMapper();
|
|
if (!fractureMapper.isFractureEdge(I, J))
|
|
// do nothing if the edge from i to j is not part of a
|
|
// fracture
|
|
return;
|
|
|
|
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
|
|
Scalar scvfArea = scvf.area();
|
|
|
|
// advective mass fluxes of all phases
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
|
|
continue;
|
|
|
|
// reduce the matrix mass flux by the width of the scv
|
|
// face that is occupied by the fracture. As usual, the
|
|
// fracture is shared between two SCVs, so the its width
|
|
// needs to be divided by two.
|
|
flux[conti0EqIdx + phaseIdx] *=
|
|
1 - extQuants.fractureWidth() / (2 * scvfArea);
|
|
|
|
// intensive quantities of the upstream and the downstream DOFs
|
|
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
flux[conti0EqIdx + phaseIdx] +=
|
|
extQuants.fractureVolumeFlux(phaseIdx) * up.fractureFluidState().density(phaseIdx);
|
|
}
|
|
|
|
EnergyModule::handleFractureFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|