opm-simulators/opm/simulators/flow/FlowMainEbos.hpp

686 lines
28 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#define OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#include <sys/utsname.h>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <opm/simulators/flow/SimulatorFullyImplicitBlackoilEbos.hpp>
#include <opm/simulators/utils/ParallelFileMerger.hpp>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp>
#include <opm/simulators/utils/ParallelEclipseState.hpp>
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/checkDeck.hpp>
#include <opm/common/utility/String.hpp>
#include <fmt/format.h>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableDryRun {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputInterval {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EnableLoggingFalloutWarning {
using type = UndefinedProperty;
};
// TODO: enumeration parameters. we use strings for now.
template<class TypeTag>
struct EnableDryRun<TypeTag, TTag::EclFlowProblem> {
static constexpr auto value = "auto";
};
// Do not merge parallel output files or warn about them
template<class TypeTag>
struct EnableLoggingFalloutWarning<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputInterval<TypeTag, TTag::EclFlowProblem> {
static constexpr int value = 1;
};
} // namespace Opm::Properties
namespace Opm
{
// The FlowMain class is the ebos based black-oil simulator.
template <class TypeTag>
class FlowMainEbos
{
public:
using MaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using EbosSimulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
typedef Opm::SimulatorFullyImplicitBlackoilEbos<TypeTag> Simulator;
FlowMainEbos(int argc, char **argv, bool output_cout, bool output_files )
: argc_{argc}, argv_{argv},
output_cout_{output_cout}, output_files_{output_files}
{
}
// Read the command line parameters. Throws an exception if something goes wrong.
static int setupParameters_(int argc, char** argv)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
if (!ParamsMeta::registrationOpen()) {
// We have already successfully run setupParameters_().
// For the dynamically chosen runs (as from the main flow
// executable) we must run this function again with the
// real typetag to be used, as the first time was with the
// "FlowEarlyBird" typetag. However, for the static ones (such
// as 'flow_onephase_energy') it has already been run with the
// correct typetag.
return EXIT_SUCCESS;
}
// register the flow specific parameters
EWOMS_REGISTER_PARAM(TypeTag, std::string, EnableDryRun,
"Specify if the simulation ought to be actually run, or just pretended to be");
EWOMS_REGISTER_PARAM(TypeTag, int, OutputInterval,
"Specify the number of report steps between two consecutive writes of restart data");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableLoggingFalloutWarning,
"Developer option to see whether logging was on non-root processors. In that case it will be appended to the *.DBG or *.PRT files");
Simulator::registerParameters();
// register the parameters inherited from ebos
Opm::registerAllParameters_<TypeTag>(/*finalizeRegistration=*/false);
// hide the parameters unused by flow. TODO: this is a pain to maintain
EWOMS_HIDE_PARAM(TypeTag, EnableGravity);
EWOMS_HIDE_PARAM(TypeTag, EnableGridAdaptation);
// this parameter is actually used in eWoms, but the flow well model
// hard-codes the assumption that the intensive quantities cache is enabled,
// so flow crashes. Let's hide the parameter for that reason.
EWOMS_HIDE_PARAM(TypeTag, EnableIntensiveQuantityCache);
// thermodynamic hints are not implemented/required by the eWoms blackoil
// model
EWOMS_HIDE_PARAM(TypeTag, EnableThermodynamicHints);
// in flow only the deck file determines the end time of the simulation
EWOMS_HIDE_PARAM(TypeTag, EndTime);
// time stepping is not done by the eWoms code in flow
EWOMS_HIDE_PARAM(TypeTag, InitialTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepDivisions);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MinTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, PredeterminedTimeStepsFile);
EWOMS_HIDE_PARAM(TypeTag, EclMaxTimeStepSizeAfterWellEvent);
EWOMS_HIDE_PARAM(TypeTag, EclRestartShrinkFactor);
EWOMS_HIDE_PARAM(TypeTag, EclEnableTuning);
// flow also does not use the eWoms Newton method
EWOMS_HIDE_PARAM(TypeTag, NewtonMaxError);
EWOMS_HIDE_PARAM(TypeTag, NewtonMaxIterations);
EWOMS_HIDE_PARAM(TypeTag, NewtonTolerance);
EWOMS_HIDE_PARAM(TypeTag, NewtonTargetIterations);
EWOMS_HIDE_PARAM(TypeTag, NewtonVerbose);
EWOMS_HIDE_PARAM(TypeTag, NewtonWriteConvergence);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumTolerance);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumToleranceExponent);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonStrictIterations);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedVolumeFraction);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedTolerance);
// the default eWoms checkpoint/restart mechanism does not work with flow
EWOMS_HIDE_PARAM(TypeTag, RestartTime);
EWOMS_HIDE_PARAM(TypeTag, RestartWritingInterval);
// hide all vtk related it is not currently possible to do this dependet on if the vtk writing is used
//if(not(EWOMS_GET_PARAM(TypeTag,bool,EnableVtkOutput))){
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePorosity);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePotentialGradients);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePressures);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVars);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVarsMeaning);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteProcessRank);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteRelativePermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedGasOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedOilGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturationRatios);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturations);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTemperature);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteViscosities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteWaterFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteIntrinsicPermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteEclTracerConcentration);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteExtrusionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFilterVelocities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDensities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDofIndex);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMobilities);
//}
EWOMS_HIDE_PARAM(TypeTag, VtkWriteAverageMolarMasses);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacityCoeffs);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMolarities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMoleFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMoleFractions);
EWOMS_END_PARAM_REGISTRATION(TypeTag);
int mpiRank = 0;
#if HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
#endif
// read in the command line parameters
int status = Opm::setupParameters_<TypeTag>(argc, const_cast<const char**>(argv), /*doRegistration=*/false, /*allowUnused=*/true, /*handleHelp=*/(mpiRank==0));
if (status == 0) {
// deal with unknown parameters.
int unknownKeyWords = 0;
if (mpiRank == 0) {
unknownKeyWords = Opm::Parameters::printUnused<TypeTag>(std::cerr);
}
#if HAVE_MPI
int globalUnknownKeyWords;
MPI_Allreduce(&unknownKeyWords, &globalUnknownKeyWords, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
unknownKeyWords = globalUnknownKeyWords;
#endif
if ( unknownKeyWords )
{
if ( mpiRank == 0 )
{
std::string msg = "Aborting simulation due to unknown "
"parameters. Please query \"flow --help\" for "
"supported command line parameters.";
if (OpmLog::hasBackend("STREAMLOG"))
{
OpmLog::error(msg);
}
else {
std::cerr << msg << std::endl;
}
}
return EXIT_FAILURE;
}
// deal with --print-properties and --print-parameters and unknown parameters.
bool doExit = false;
if (EWOMS_GET_PARAM(TypeTag, int, PrintProperties) == 1) {
doExit = true;
if (mpiRank == 0)
Opm::Properties::printValues<TypeTag>();
}
if (EWOMS_GET_PARAM(TypeTag, int, PrintParameters) == 1) {
doExit = true;
if (mpiRank == 0)
Opm::Parameters::printValues<TypeTag>();
}
if (doExit)
return -1;
}
return status;
}
static void printBanner()
{
const int lineLen = 70;
const std::string version = moduleVersionName();
const std::string banner = "This is flow "+version;
const int bannerPreLen = (lineLen - 2 - banner.size())/2;
const int bannerPostLen = bannerPreLen + (lineLen - 2 - banner.size())%2;
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "*" << std::string(bannerPreLen, ' ') << banner << std::string(bannerPostLen, ' ') << "*\n";
std::cout << "* *\n";
std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n";
std::cout << "* including solvent and polymer capabilities. *\n";
std::cout << "* For more information, see https://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
int threads = 1;
int mpiSize = 1;
#ifdef _OPENMP
// This function is called before the parallel OpenMP stuff gets initialized.
// That initialization happends after the deck is read and we want this message.
// Hence we duplicate the code of setupParallelism to get the number of threads.
if (getenv("OMP_NUM_THREADS"))
threads = omp_get_max_threads();
else
threads = std::min(2, omp_get_max_threads());
const int input_threads = EWOMS_GET_PARAM(TypeTag, int, ThreadsPerProcess);
if (input_threads > 0)
threads = std::min(input_threads, omp_get_max_threads());
#endif
#if HAVE_MPI
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
std::cout << "Using "<< mpiSize << " MPI processes with "<< threads <<" OMP threads on each \n\n";
}
/// This is the main function of Flow. It runs a complete simulation with the
/// given grid and simulator classes, based on the user-specified command-line
/// input.
int execute()
{
return execute_(&FlowMainEbos::runSimulator, /*cleanup=*/true);
}
int executeInitStep()
{
return execute_(&FlowMainEbos::runSimulatorInit, /*cleanup=*/false);
}
// Returns true unless "EXIT" was encountered in the schedule
// section of the input datafile.
int executeStep()
{
return simulator_->runStep(*simtimer_);
}
// Called from Python to cleanup after having executed the last
// executeStep()
int executeStepsCleanup()
{
SimulatorReport report = simulator_->finalize();
runSimulatorAfterSim_(report);
return report.success.exit_status;
}
// Print an ASCII-art header to the PRT and DEBUG files.
// \return Whether unkown keywords were seen during parsing.
static void printPRTHeader(bool output_cout)
{
if (output_cout) {
const std::string version = moduleVersion();
const double megabyte = 1024 * 1024;
unsigned num_cpu = std::thread::hardware_concurrency();
struct utsname arch;
const char* user = getlogin();
time_t now = std::time(0);
struct tm tstruct;
char tmstr[80];
tstruct = *localtime(&now);
strftime(tmstr, sizeof(tmstr), "%d-%m-%Y at %X", &tstruct);
const double mem_size = getTotalSystemMemory() / megabyte;
std::ostringstream ss;
ss << "\n\n\n";
ss << " ######## # ###### # #\n";
ss << " # # # # # # \n";
ss << " ##### # # # # # # \n";
ss << " # # # # # # # # \n";
ss << " # ####### ###### # # \n\n";
ss << "Flow is a simulator for fully implicit three-phase black-oil flow,";
ss << " and is part of OPM.\nFor more information visit: https://opm-project.org \n\n";
ss << "Flow Version = " + version + "\n";
if (uname(&arch) == 0) {
ss << "Machine name = " << arch.nodename << " (Number of logical cores: " << num_cpu;
ss << ", Memory size: " << std::fixed << std::setprecision (2) << mem_size << " MB) \n";
ss << "Operating system = " << arch.sysname << " " << arch.machine << " (Kernel: " << arch.release;
ss << ", " << arch.version << " )\n";
ss << "Build time = " << compileTimestamp() << "\n";
}
if (user) {
ss << "User = " << user << std::endl;
}
ss << "Simulation started on " << tmstr << " hrs\n";
ss << "Parameters used by Flow:\n";
Opm::Parameters::printValues<TypeTag>(ss);
OpmLog::note(ss.str());
}
}
EbosSimulator *getSimulatorPtr() {
return ebosSimulator_.get();
}
private:
// called by execute() or executeInitStep()
int execute_(int (FlowMainEbos::* runOrInitFunc)(), bool cleanup)
{
try {
// deal with some administrative boilerplate
int status = setupParameters_(this->argc_, this->argv_);
if (status)
return status;
setupParallelism();
setupEbosSimulator();
createSimulator();
// if run, do the actual work, else just initialize
int exitCode = (this->*runOrInitFunc)();
if (cleanup) {
executeCleanup_();
}
return exitCode;
}
catch (const std::exception& e) {
std::ostringstream message;
message << "Program threw an exception: " << e.what();
if (this->output_cout_) {
// in some cases exceptions are thrown before the logging system is set
// up.
if (OpmLog::hasBackend("STREAMLOG")) {
OpmLog::error(message.str());
}
else {
std::cout << message.str() << "\n";
}
}
return EXIT_FAILURE;
}
}
void executeCleanup_() {
// clean up
mergeParallelLogFiles();
}
protected:
void setupParallelism()
{
// determine the rank of the current process and the number of processes
// involved in the simulation. MPI must have already been initialized
// here. (yes, the name of this method is misleading.)
#if HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank_);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size_);
#else
mpi_rank_ = 0;
mpi_size_ = 1;
#endif
#if _OPENMP
// if openMP is available, default to 2 threads per process.
if (!getenv("OMP_NUM_THREADS"))
omp_set_num_threads(std::min(2, omp_get_num_procs()));
#endif
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
ThreadManager::init();
}
void mergeParallelLogFiles()
{
// force closing of all log files.
OpmLog::removeAllBackends();
if (mpi_rank_ != 0 || mpi_size_ < 2 || !this->output_files_) {
return;
}
namespace fs = Opm::filesystem;
const std::string& output_dir = eclState().getIOConfig().getOutputDir();
fs::path output_path(output_dir);
fs::path deck_filename(EWOMS_GET_PARAM(TypeTag, std::string, EclDeckFileName));
std::string basename;
// Strip extension "." and ".DATA"
std::string extension = uppercase(deck_filename.extension().string());
if ( extension == ".DATA" || extension == "." )
{
basename = uppercase(deck_filename.stem().string());
}
else
{
basename = uppercase(deck_filename.filename().string());
}
std::for_each(fs::directory_iterator(output_path),
fs::directory_iterator(),
detail::ParallelFileMerger(output_path, basename,
EWOMS_GET_PARAM(TypeTag, bool, EnableLoggingFalloutWarning)));
}
void setupEbosSimulator()
{
ebosSimulator_.reset(new EbosSimulator(/*verbose=*/false));
ebosSimulator_->executionTimer().start();
ebosSimulator_->model().applyInitialSolution();
try {
// Possible to force initialization only behavior (NOSIM).
const std::string& dryRunString = EWOMS_GET_PARAM(TypeTag, std::string, EnableDryRun);
if (dryRunString != "" && dryRunString != "auto") {
bool yesno;
if (dryRunString == "true"
|| dryRunString == "t"
|| dryRunString == "1")
yesno = true;
else if (dryRunString == "false"
|| dryRunString == "f"
|| dryRunString == "0")
yesno = false;
else
throw std::invalid_argument("Invalid value for parameter EnableDryRun: '"
+dryRunString+"'");
auto& ioConfig = eclState().getIOConfig();
ioConfig.overrideNOSIM(yesno);
}
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid EclipseState object" << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
throw;
}
}
const Deck& deck() const
{ return ebosSimulator_->vanguard().deck(); }
Deck& deck()
{ return ebosSimulator_->vanguard().deck(); }
const EclipseState& eclState() const
{ return ebosSimulator_->vanguard().eclState(); }
EclipseState& eclState()
{ return ebosSimulator_->vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_->vanguard().schedule(); }
// Run the simulator.
int runSimulator()
{
return runSimulatorInitOrRun_(&FlowMainEbos::runSimulatorRunCallback_);
}
int runSimulatorInit()
{
return runSimulatorInitOrRun_(&FlowMainEbos::runSimulatorInitCallback_);
}
private:
// Callback that will be called from runSimulatorInitOrRun_().
int runSimulatorRunCallback_()
{
SimulatorReport report = simulator_->run(*simtimer_);
runSimulatorAfterSim_(report);
return report.success.exit_status;
}
// Callback that will be called from runSimulatorInitOrRun_().
int runSimulatorInitCallback_()
{
simulator_->init(*simtimer_);
return EXIT_SUCCESS;
}
// Output summary after simulation has completed
void runSimulatorAfterSim_(SimulatorReport &report)
{
if (this->output_cout_) {
std::ostringstream ss;
ss << "\n\n================ End of simulation ===============\n\n";
ss << fmt::format("Number of MPI processes: {:9}\n", mpi_size_ );
#if _OPENMP
int threads = omp_get_max_threads();
#else
int threads = 1;
#endif
ss << fmt::format("Threads per MPI process: {:9}\n", threads);
report.reportFullyImplicit(ss);
OpmLog::info(ss.str());
const std::string dir = eclState().getIOConfig().getOutputDir();
namespace fs = Opm::filesystem;
fs::path output_dir(dir);
{
std::string filename = eclState().getIOConfig().getBaseName() + ".INFOSTEP";
fs::path fullpath = output_dir / filename;
std::ofstream os(fullpath.string());
report.fullReports(os);
}
}
}
// Run the simulator.
int runSimulatorInitOrRun_(int (FlowMainEbos::* initOrRunFunc)())
{
const auto& schedule = this->schedule();
const auto& timeMap = schedule.getTimeMap();
auto& ioConfig = eclState().getIOConfig();
simtimer_ = std::make_unique<SimulatorTimer>();
// initialize variables
const auto& initConfig = eclState().getInitConfig();
simtimer_->init(timeMap, (size_t)initConfig.getRestartStep());
if (this->output_cout_) {
std::ostringstream oss;
// This allows a user to catch typos and misunderstandings in the
// use of simulator parameters.
if (Opm::Parameters::printUnused<TypeTag>(oss)) {
std::cout << "----------------- Unrecognized parameters: -----------------\n";
std::cout << oss.str();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
if (!ioConfig.initOnly()) {
if (this->output_cout_) {
std::string msg;
msg = "\n\n================ Starting main simulation loop ===============\n";
OpmLog::info(msg);
}
return (this->*initOrRunFunc)();
}
else {
if (this->output_cout_) {
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
return EXIT_SUCCESS;
}
}
protected:
/// This is the main function of Flow.
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// Create the simulator instance.
simulator_.reset(new Simulator(*ebosSimulator_));
}
static unsigned long long getTotalSystemMemory()
{
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
return pages * page_size;
}
Grid& grid()
{ return ebosSimulator_->vanguard().grid(); }
private:
std::unique_ptr<EbosSimulator> ebosSimulator_;
int mpi_rank_ = 0;
int mpi_size_ = 1;
std::any parallel_information_;
std::unique_ptr<Simulator> simulator_;
std::unique_ptr<SimulatorTimer> simtimer_;
int argc_;
char **argv_;
bool output_cout_;
bool output_files_;
};
} // namespace Opm
#endif // OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED