opm-simulators/opm/simulators/wells/RateConverter.cpp

380 lines
14 KiB
C++

/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
Copyright 2017, IRIS
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <algorithm>
#include <cmath>
#include <stdexcept>
#include <string>
namespace {
template <typename Rates>
std::pair<double, double>
dissolvedVaporisedRatio(const int io,
const int ig,
const double rs,
const double rv,
const Rates& surface_rates)
{
if ((io < 0) || (ig < 0)) {
return { rs, rv };
}
auto eps = std::copysign(1.0e-15, surface_rates[io]);
const auto Rs = surface_rates[ig] / (surface_rates[io] + eps);
eps = std::copysign(1.0e-15, surface_rates[ig]);
const auto Rv = surface_rates[io] / (surface_rates[ig] + eps);
return {
std::clamp(static_cast<double>(Rs), 0.0, rs),
std::clamp(static_cast<double>(Rv), 0.0, rv)
};
}
}
namespace Opm {
namespace RateConverter {
template <class FluidSystem, class Region>
void SurfaceToReservoirVoidage<FluidSystem,Region>::
sumRates(std::unordered_map<RegionId,Attributes>& attributes_hpv,
std::unordered_map<RegionId,Attributes>& attributes_pv,
Parallel::Communication comm)
{
for (const auto& reg : rmap_.activeRegions()) {
// Calculating first using the hydrocarbon pore volumes
auto& ra = attr_.attributes(reg);
const auto& attri_hpv = attributes_hpv[reg];
ra.data = attri_hpv.data;
comm.sum(ra.data.data(), ra.data.size());
// TODO: should we have some epsilon here instead of zero?
// No hydrocarbon pore volume, redo but this time using full pore volumes.
if (ra.pv <= 0.) {
// using the pore volume to do the averaging
const auto& attri_pv = attributes_pv[reg];
ra.data = attri_pv.data;
comm.sum(ra.data.data(), ra.data.size());
assert(ra.pv > 0.);
}
const double pv_sum = ra.pv;
for (double& d : ra.data)
d /= pv_sum;
ra.pv = pv_sum;
}
}
template <class FluidSystem, class Region>
template <class Coeff>
void SurfaceToReservoirVoidage<FluidSystem,Region>::
calcInjCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
{
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const double saltConcentration = ra.saltConcentration;
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0, saltConcentration);
coeff[iw] = 1.0 / bw;
}
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0);
coeff[io] += 1.0 / bo;
}
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0, 0.0);
coeff[ig] += 1.0 / bg;
}
}
template <class FluidSystem, class Region>
template <class Coeff>
void SurfaceToReservoirVoidage<FluidSystem,Region>::
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
{
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const double saltConcentration = ra.saltConcentration;
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
// Actual Rsw and Rvw:
double Rsw = ra.rsw;
double Rvw = ra.rvw;
// Determinant of 'R' matrix
const double detRw = 1.0 - (Rsw * Rvw);
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
// q[w]_r = 1/(bw * (1 - rsw*rvw)) * (q[w]_s - rvw*q[g]_s)
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rsw, saltConcentration);
const double den = bw * detRw;
coeff[iw] += 1.0 / den;
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
coeff[ig] -= ra.rvw / den;
}
}
// Actual Rs and Rv:
double Rs = ra.rs;
double Rv = ra.rv;
// Determinant of 'R' matrix
const double detR = 1.0 - (Rs * Rv);
// Currently we only support either gas in water or gas in oil
// not both
if (detR != 1 && detRw != 1) {
std::string msg = "only support " + std::to_string(detR) + " " + std::to_string(detR);
throw std::range_error(msg);
}
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
const double den = bo * detR;
coeff[io] += 1.0 / den;
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
coeff[ig] -= ra.rv / den;
}
}
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv, Rvw);
if (FluidSystem::enableDissolvedGasInWater()) {
const double denw = bg * detRw;
coeff[ig] += 1.0 / denw;
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
coeff[iw] -= ra.rsw / denw;
}
} else {
const double den = bg * detR;
coeff[ig] += 1.0 / den;
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
coeff[io] -= ra.rs / den;
}
}
}
}
template <class FluidSystem, class Region>
template <typename SurfaceRates, typename VoidageRates>
void SurfaceToReservoirVoidage<FluidSystem,Region>::
calcReservoirVoidageRates(const int pvtRegionIdx,
const double p,
const double rs,
const double rv,
const double rsw,
const double rvw,
const double T,
const double saltConcentration,
const SurfaceRates& surface_rates,
VoidageRates& voidage_rates) const
{
const auto& pu = this->phaseUsage_;
const auto iw = RegionAttributeHelpers::PhasePos::water(pu);
const auto io = RegionAttributeHelpers::PhasePos::oil (pu);
const auto ig = RegionAttributeHelpers::PhasePos::gas (pu);
const auto [Rs, Rv] =
dissolvedVaporisedRatio(io, ig, rs, rv, surface_rates);
const auto [Rsw, Rvw] =
dissolvedVaporisedRatio(iw, ig, rsw, rvw, surface_rates);
std::fill_n(&voidage_rates[0], pu.num_phases, 0.0);
// Determinant of 'R' matrix
const auto detRw = 1.0 - (Rsw * Rvw);
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
// q[w]_r = 1/(bw * (1 - rsw*rvw)) * (q[w]_s - rvw*q[g]_s)
voidage_rates[iw] = surface_rates[iw];
const auto bw = FluidSystem::waterPvt()
.inverseFormationVolumeFactor(pvtRegionIdx, T, p,
Rsw,
saltConcentration);
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
voidage_rates[iw] -= Rvw * surface_rates[ig];
}
voidage_rates[iw] /= bw * detRw;
}
// Determinant of 'R' matrix
const auto detR = 1.0 - (Rs * Rv);
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
voidage_rates[io] = surface_rates[io];
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
voidage_rates[io] -= Rv * surface_rates[ig];
}
const auto bo = FluidSystem::oilPvt()
.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
voidage_rates[io] /= bo * detR;
}
// we only support either gas in water
// or gas in oil
if (detR != 1 && detRw != 1) {
std::string msg = "only support " + std::to_string(detR) + " " + std::to_string(detR);
throw std::range_error(msg);
}
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
voidage_rates[ig] = surface_rates[ig];
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
voidage_rates[ig] -= Rs * surface_rates[io];
}
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
voidage_rates[ig] -= Rsw * surface_rates[iw];
}
const auto bg = FluidSystem::gasPvt()
.inverseFormationVolumeFactor(pvtRegionIdx, T, p,
Rv, Rvw);
// we only support either gas in water or gas in oil
if (detRw == 1) {
voidage_rates[ig] /= bg * detR;
} else {
voidage_rates[ig] /= bg * detRw;
}
}
}
template <class FluidSystem, class Region>
template <class Rates>
void SurfaceToReservoirVoidage<FluidSystem,Region>::
calcReservoirVoidageRates(const RegionId r,
const int pvtRegionIdx,
const Rates& surface_rates,
Rates& voidage_rates) const
{
const auto& ra = this->attr_.attributes(r);
this->calcReservoirVoidageRates(pvtRegionIdx,
ra.pressure, ra.rs, ra.rv,
ra.rsw, ra.rvw,
ra.temperature,
ra.saltConcentration,
surface_rates,
voidage_rates);
}
template <class FluidSystem, class Region>
template <class Rates>
std::pair<double, double>
SurfaceToReservoirVoidage<FluidSystem,Region>::
inferDissolvedVaporisedRatio(const double rsMax,
const double rvMax,
const Rates& surface_rates) const
{
const auto io = RegionAttributeHelpers::PhasePos::oil(this->phaseUsage_);
const auto ig = RegionAttributeHelpers::PhasePos::gas(this->phaseUsage_);
return dissolvedVaporisedRatio(io, ig, rsMax, rvMax, surface_rates);
}
using FS = BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>;
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
sumRates(std::unordered_map<int,Attributes>&,
std::unordered_map<int,Attributes>&,
Parallel::Communication);
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
calcInjCoeff<std::vector<double>>(const int, const int, std::vector<double>&) const;
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
calcCoeff<std::vector<double>>(const int, const int, std::vector<double>&) const;
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
calcReservoirVoidageRates<std::vector<double>,std::vector<double>>(const int,
const double,
const double,
const double,
const double,
const double,
const double,
const double,
const std::vector<double>&,
std::vector<double>&) const;
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
calcReservoirVoidageRates<double const*,double*>(const int,
const double,
const double,
const double,
const double,
const double,
const double,
const double,
double const* const&,
double*&) const;
template void SurfaceToReservoirVoidage<FS,std::vector<int>>::
calcReservoirVoidageRates<std::vector<double>>(const int,
const int,
const std::vector<double>&,
std::vector<double>&) const;
template std::pair<double,double>
SurfaceToReservoirVoidage<FS,std::vector<int>>::
inferDissolvedVaporisedRatio<std::vector<double>::iterator>(const double,
const double,
const std::vector<double>::iterator&) const;
} // namespace RateConverter
} // namespace Opm