opm-simulators/examples/problems/stokesnitestproblem.hh
Andreas Lauser 290584dddc clean up the licensing preable of source files
the in-file lists of authors has been removed in favor of a global
list of authors in the LICENSE file. this is done because (a)
maintaining a list of authors at the beginning of a file is a major
pain in the a**, (b) the list of authors was not accurate in about 85%
of all cases where more than one person was involved and (c) this list
is not legally binding in any way (the copyright is at the person who
authored a given change, if these lists had any legal relevance, one
could "aquire" the copyright of the module by forking it and removing
the lists...)

the only exception of this is the eWoms fork of dune-istl's solvers.hh
file. This is beneficial because the authors of that file do not
appear in the global list. Further, carrying the fork of that file is
required because we would like to use a reasonable convergence
criterion for the linear solver. (the solvers from dune-istl do
neither support user-defined convergence criteria not do the
developers want support for it. (my patch was rejected a few years
ago.))
2016-03-17 13:20:20 +01:00

330 lines
9.9 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Ewoms::StokesNiTestProblem
*/
#ifndef EWOMS_STOKES_NI_TEST_PROBLEM_HH
#define EWOMS_STOKES_NI_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <ewoms/io/simplexgridmanager.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class StokesNiTestProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(StokesNiTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(StokesNiTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(StokesNiTestProblem, Problem, Ewoms::StokesNiTestProblem<TypeTag>);
//! Select the fluid system
SET_TYPE_PROP(StokesNiTestProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! Select the phase to be considered
SET_INT_PROP(StokesNiTestProblem, StokesPhaseIndex,
GET_PROP_TYPE(TypeTag, FluidSystem)::gasPhaseIdx);
// Enable gravity
SET_BOOL_PROP(StokesNiTestProblem, EnableGravity, true);
// Enable the energy equation
SET_BOOL_PROP(StokesNiTestProblem, EnableEnergy, true);
// Enable constraints
SET_BOOL_PROP(StokesNiTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(StokesNiTestProblem, EndTime, 3.0);
// Default initial time step size [s]
SET_SCALAR_PROP(StokesNiTestProblem, InitialTimeStepSize, 0.1);
// Increase the default raw tolerance of the Newton-Raphson method to 10^-4
SET_SCALAR_PROP(StokesNiTestProblem, NewtonRawTolerance, 1e-4);
// Default grid file to load
SET_STRING_PROP(StokesNiTestProblem, GridFile, "data/test_stokes2cni.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup StokesNiModel
* \ingroup TestProblems
* \brief Non-isothermal test problem for the Stokes model with a gas
* (N2) flowing from the left to the right.
*
* The domain of this problem is 1m times 1m. The upper and the lower
* boundaries are fixed to the initial condition by means of
* constraints, the left and the right boundaries are no-slip
* conditions.
*/
template <class TypeTag>
class StokesNiTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// primary variable indices
pressureIdx = Indices::pressureIdx,
moleFrac1Idx = Indices::moleFrac1Idx,
velocity0Idx = Indices::velocity0Idx,
temperatureIdx = Indices::temperatureIdx,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
energyEqIdx = Indices::energyEqIdx
};
enum { numComponents = FluidSystem::numComponents };
enum { H2OIdx = FluidSystem::H2OIdx };
enum { AirIdx = FluidSystem::AirIdx };
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
StokesNiTestProblem(Simulator &simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1e-6;
// initialize the tables of the fluid system
FluidSystem::init(/*Tmin=*/280.0, /*Tmax=*/285, /*nT=*/10,
/*pmin=*/1e5, /*pmax=*/1e5 + 100, /*np=*/200);
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokestest_ni"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onLowerBoundary_(pos)) {
// lower boundary is constraint!
values = 0.0;
}
else {
// left and right
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volumetric terms
*/
// \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar moleFrac[numComponents];
moleFrac[H2OIdx] = 1e-4;
Scalar temperature = 283.15;
if (inLens_(pos)) {
moleFrac[H2OIdx] = 0.9e-4;
temperature = 284.15;
}
moleFrac[AirIdx] = 1 - moleFrac[H2OIdx];
// parabolic velocity profile
Scalar y = this->boundingBoxMax()[1] - pos[1];
Scalar x = pos[0] - this->boundingBoxMin()[0];
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
// parabolic velocity profile
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (width * width);
Scalar b = -a * width;
Scalar c = 0;
DimVector velocity(0.0);
velocity[1] = a * x * x + b * x + c;
// hydrostatic pressure
Scalar rho = 1.189;
Scalar pressure = 1e5 - rho * this->gravity()[1] * y;
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
values[velocity0Idx + axisIdx] = velocity[axisIdx];
values[pressureIdx] = pressure;
values[moleFrac1Idx] = moleFrac[1];
values[temperatureIdx] = temperature;
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* This problem sets temperature constraints for the finite volumes
* adjacent to the inlet.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(pos) || onUpperBoundary_(pos)) {
constraints.setActive(true);
initial(constraints, context, spaceIdx, timeIdx);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onBoundary_(const GlobalPosition &pos) const
{
return onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos) || onUpperBoundary_(pos);
}
bool inLens_(const GlobalPosition &pos) const
{ return pos[0] < 0.75 && pos[0] > 0.25 && pos[1] < 0.75 && pos[1] > 0.25; }
Scalar eps_;
};
} // namespace Ewoms
#endif