mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 07:56:26 -06:00
270 lines
8.9 KiB
C++
270 lines
8.9 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
|
|
#include <algorithm>
|
|
|
|
namespace Opm {
|
|
|
|
|
|
VFPProperties::VFPProperties(VFPProdTable* table) : table_(table) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
double VFPProperties::bhp(const double& flo, const double& thp, const double& wfr, const double& gfr, const double& alq) {
|
|
//First, find the values to interpolate between
|
|
auto flo_i = find_interp_data(flo, table_->getFloAxis());
|
|
auto thp_i = find_interp_data(thp, table_->getTHPAxis());
|
|
auto wfr_i = find_interp_data(wfr, table_->getWFRAxis());
|
|
auto gfr_i = find_interp_data(gfr, table_->getGFRAxis());
|
|
auto alq_i = find_interp_data(alq, table_->getALQAxis());
|
|
|
|
//Then perform the interpolation itself
|
|
return interpolate(flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
}
|
|
|
|
VFPProperties::ADB VFPProperties::bhp(const ADB& flo, const ADB& thp, const ADB& wfr, const ADB& gfr, const ADB& alq) {
|
|
const ADB::V& f_v = flo.value();
|
|
const ADB::V& t_v = thp.value();
|
|
const ADB::V& w_v = wfr.value();
|
|
const ADB::V& g_v = gfr.value();
|
|
const ADB::V& a_v = alq.value();
|
|
|
|
const int nw = f_v.size();
|
|
|
|
//Compute the BHP for each well independently
|
|
ADB::V bhp_vals;
|
|
bhp_vals.resize(nw);
|
|
for (int i=0; i<nw; ++i) {
|
|
bhp_vals[i] = bhp(f_v[i], t_v[i], w_v[i], g_v[i], a_v[i]);
|
|
}
|
|
//Create an ADB constant value.
|
|
return ADB::constant(bhp_vals);
|
|
}
|
|
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::bhp(const Wells& wells, const ADB& qs, const ADB& thp, const ADB& alq) {
|
|
const int np = wells.number_of_phases;
|
|
const int nw = wells.number_of_wells;
|
|
|
|
//Short-hands for water / oil / gas phases
|
|
//TODO enable support for two-phase.
|
|
assert(np == 3);
|
|
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
|
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
|
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
|
|
|
ADB flo = getFlo(w, o, g, table_->getFloType());
|
|
ADB wfr = getWFR(w, o, g, table_->getWFRType());
|
|
ADB gfr = getGFR(w, o, g, table_->getGFRType());
|
|
|
|
//TODO: Check ALQ type here?
|
|
|
|
return bhp(flo, thp, wfr, gfr, alq);
|
|
}
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::getFlo(const ADB& aqua, const ADB& liquid, const ADB& vapour,
|
|
const VFPProdTable::FLO_TYPE& type) {
|
|
switch (type) {
|
|
case VFPProdTable::FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case VFPProdTable::FLO_LIQ:
|
|
//Liquid = aqua + liquid phases
|
|
return aqua + liquid;
|
|
case VFPProdTable::FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
case VFPProdTable::FLO_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
VFPProperties::ADB VFPProperties::getWFR(const ADB& aqua, const ADB& liquid, const ADB& vapour,
|
|
const VFPProdTable::WFR_TYPE& type) {
|
|
switch(type) {
|
|
case VFPProdTable::WFR_WOR:
|
|
//Water-oil ratio = water / oil
|
|
return aqua / liquid;
|
|
case VFPProdTable::WFR_WCT:
|
|
//Water cut = water / (water + oil + gas)
|
|
return aqua / (aqua + liquid + vapour);
|
|
case VFPProdTable::WFR_WGR:
|
|
//Water-gas ratio = water / gas
|
|
return aqua / vapour;
|
|
case VFPProdTable::WFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
|
|
VFPProperties::ADB VFPProperties::getGFR(const ADB& aqua, const ADB& liquid, const ADB& vapour,
|
|
const VFPProdTable::GFR_TYPE& type) {
|
|
switch(type) {
|
|
case VFPProdTable::GFR_GOR:
|
|
// Gas-oil ratio = gas / oil
|
|
return vapour / liquid;
|
|
case VFPProdTable::GFR_GLR:
|
|
// Gas-liquid ratio = gas / (oil + water)
|
|
return vapour / (liquid + aqua);
|
|
case VFPProdTable::GFR_OGR:
|
|
// Oil-gas ratio = oil / gas
|
|
return liquid / vapour;
|
|
case VFPProdTable::GFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
|
|
return ADB::null();
|
|
}
|
|
}
|
|
|
|
|
|
VFPProperties::InterpData VFPProperties::find_interp_data(const double& value, const std::vector<double>& values) {
|
|
InterpData retval;
|
|
|
|
//First element greater than or equal to value
|
|
//Start with the second element, so that floor_iter does not go out of range
|
|
//Don't access out-of-range, therefore values.end()-1
|
|
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
|
|
|
//Find last element smaller than range
|
|
auto floor_iter = ceil_iter-1;
|
|
|
|
//Find the indices
|
|
const int a = floor_iter - values.begin();
|
|
const int b = ceil_iter - values.begin();
|
|
const int max_size = std::max(static_cast<int>(values.size()) - 1, 0);
|
|
|
|
//Clamp indices to range of vector
|
|
retval.ind_[0] = a;
|
|
retval.ind_[1] = std::min(b, max_size);
|
|
|
|
//Find interpolation ratio
|
|
double dist = (*ceil_iter - *floor_iter);
|
|
assert(dist >= 0.0);
|
|
if (dist > 0.0) {
|
|
//Possible source for floating point error here if value and floor are large,
|
|
//but very close to each other
|
|
retval.factor_ = (value-*floor_iter) / dist;
|
|
}
|
|
else {
|
|
retval.factor_ = 1.0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("unroll-loops")
|
|
#endif
|
|
|
|
double VFPProperties::interpolate(const InterpData& flo_i, const InterpData& thp_i,
|
|
const InterpData& wfr_i, const InterpData& gfr_i, const InterpData& alq_i) {
|
|
double nn[2][2][2][2][2];
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
|
//we copy to (nn) will fit better in cache than the full original table for the
|
|
//interpolation below.
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
const VFPProdTable::array_type& data = table_->getTable();
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int wi = wfr_i.ind_[w];
|
|
const int gi = gfr_i.ind_[g];
|
|
const int ai = alq_i.ind_[a];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][w][g][a][f] = data[ti][wi][gi][ai][fi];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Remove dimensions one by one
|
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
|
// axis, leaving a 1D, problem, etc.
|
|
double tf = flo_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
nn[t][w][g][a][0] = (1.0-tf)*nn[t][w][g][a][0] + tf*nn[t][w][g][a][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = alq_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
nn[t][w][g][0][0] = (1.0-tf)*nn[t][w][g][0][0] + tf*nn[t][w][g][1][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
tf = gfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
nn[t][w][0][0][0] = (1.0-tf)*nn[t][w][0][0][0] + tf*nn[t][w][1][0][0];
|
|
}
|
|
}
|
|
|
|
tf = wfr_i.factor_;
|
|
for (int t=0; t<=1; ++t) {
|
|
nn[t][0][0][0][0] = (1.0-tf)*nn[t][0][0][0][0] + tf*nn[t][1][0][0][0];
|
|
}
|
|
|
|
tf = thp_i.factor_;
|
|
return (1.0-tf)*nn[0][0][0][0][0] + tf*nn[1][0][0][0][0];
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC pop_options //unroll loops
|
|
#endif
|
|
|
|
|
|
} //Namespace
|