opm-simulators/tests/test_parallelwellinfo.cpp
2021-10-05 13:07:52 +02:00

484 lines
16 KiB
C++

/*
Copyright 2020 OPM-OP AS
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include<config.h>
#include<opm/simulators/wells/ParallelWellInfo.hpp>
#include <dune/common/version.hh>
#include<vector>
#include<string>
#include<tuple>
#include<ostream>
#include <random>
#include <algorithm>
#include <iterator>
#define BOOST_TEST_MODULE ParallelWellInfo
#include <boost/test/unit_test.hpp>
class MPIError {
public:
/** @brief Constructor. */
MPIError(std::string s, int e) : errorstring(s), errorcode(e){}
/** @brief The error string. */
std::string errorstring;
/** @brief The mpi error code. */
int errorcode;
};
#ifdef HAVE_MPI
void MPI_err_handler(MPI_Comm *, int *err_code, ...){
char *err_string=new char[MPI_MAX_ERROR_STRING];
int err_length;
MPI_Error_string(*err_code, err_string, &err_length);
std::string s(err_string, err_length);
std::cerr << "An MPI Error ocurred:"<<std::endl<<s<<std::endl;
delete[] err_string;
throw MPIError(s, *err_code);
}
#endif
struct MPIFixture
{
MPIFixture()
{
#if HAVE_MPI
int m_argc = boost::unit_test::framework::master_test_suite().argc;
char** m_argv = boost::unit_test::framework::master_test_suite().argv;
helper = &Dune::MPIHelper::instance(m_argc, m_argv);
#ifdef MPI_2
MPI_Comm_create_errhandler(MPI_err_handler, &handler);
MPI_Comm_set_errhandler(MPI_COMM_WORLD, handler);
#else
MPI_Errhandler_create(MPI_err_handler, &handler);
MPI_Errhandler_set(MPI_COMM_WORLD, handler);
#endif
#endif
}
~MPIFixture()
{
#if HAVE_MPI
MPI_Finalize();
#endif
}
Dune::MPIHelper* helper;
#if HAVE_MPI
MPI_Errhandler handler;
#endif
};
BOOST_GLOBAL_FIXTURE(MPIFixture);
// Needed for BOOST_CHECK_EQUAL_COLLECTIONS
namespace std
{
std::ostream& operator<<(std::ostream& os, const std::pair<std::string, bool>& p)
{
return os << "{" << p.first << " "<< p.second << "}";
}
}
namespace Opm
{
std::ostream& operator<<(std::ostream& os, const Opm::ParallelWellInfo& w)
{
return os << "{" << w.name() << " "<< w.hasLocalCells() << " "<<
w.isOwner() << "}";
}
}
constexpr int numPerProc = 3;
BOOST_AUTO_TEST_CASE(ParallelWellComparison)
{
int argc = 0;
char** argv = nullptr;
const auto& helper = Dune::MPIHelper::instance(argc, argv);
std::vector<std::pair<std::string,bool>> pairs;
if (helper.rank() == 0)
pairs = {{"Test1", true},{"Test2", true}, {"Test1", false} };
else
pairs = {{"Test1", false},{"Test2", true}, {"Test1", true} };
std::vector<Opm::ParallelWellInfo> well_info;
for (const auto& wellinfo : pairs) {
well_info.emplace_back(wellinfo, Opm::ParallelWellInfo::Communication());
}
//well_info.assign(pairs.begin(), pairs.end());
BOOST_CHECK_EQUAL_COLLECTIONS(pairs.begin(), pairs.end(),
well_info.begin(), well_info.end());
BOOST_CHECK_EQUAL_COLLECTIONS(well_info.begin(), well_info.end(),
pairs.begin(), pairs.end());
BOOST_CHECK(well_info[0] < pairs[1]);
BOOST_CHECK(pairs[0] != well_info[1]);
BOOST_CHECK(pairs[0] < well_info[1]);
BOOST_CHECK(well_info[0] == pairs[0]);
BOOST_CHECK(well_info[0] != well_info[1]);
Opm::ParallelWellInfo well0, well1;
BOOST_CHECK(well0 == well1);
#if HAVE_MPI
BOOST_CHECK(well0.communication()==helper.getLocalCommunicator());
#endif
Opm::ParallelWellInfo well2("Test", false);
std::pair<std::string, bool> pwell={"Test", true};
BOOST_CHECK(well2 < pwell);
Opm::ParallelWellInfo well3("Test", true);
BOOST_CHECK(! (well3 < pwell));
pwell.second = false;
BOOST_CHECK(! (well3 < pwell));
if (helper.rank() == 0)
BOOST_CHECK(well_info[0].communication().size()==1);
#if HAVE_MPI
Opm::ParallelWellInfo::Communication comm{MPI_COMM_WORLD};
BOOST_CHECK(well_info[1].communication().size() == comm.size());
if (helper.rank() > 0)
{
BOOST_CHECK(well_info[2].communication().size() == comm.size()-1);
}
#endif
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowSelf)
{
auto comm = Dune::MPIHelper::getLocalCommunicator();
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
std::vector<int> eclIndex = {0, 1, 2, 3, 7 , 8, 10, 11};
std::vector<double> current(eclIndex.size());
std::transform(eclIndex.begin(), eclIndex.end(), current.begin(),
[](double v){ return 1+10.0*v;});
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
if (i==0)
commAboveBelow.pushBackEclIndex(-1, eclIndex[i]);
else
commAboveBelow.pushBackEclIndex(eclIndex[i-1], eclIndex[i]);
}
commAboveBelow.endReset();
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
auto a = above.begin()+1;
std::for_each(current.begin(), current.begin() + (current.size()-1),
[&a](double v){ BOOST_CHECK(*(a++) == v);});
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
auto b = below.begin();
std::for_each(current.begin()+1, current.end(),
[&b](double v){ BOOST_CHECK(*(b++) == v);});
}
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowSelf1)
{
auto comm = Dune::MPIHelper::getLocalCommunicator();
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
std::vector<int> eclIndex = {0};
std::vector<double> current(eclIndex.size());
std::transform(eclIndex.begin(), eclIndex.end(), current.begin(),
[](double v){ return 1+10.0*v;});
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
if (i==0)
commAboveBelow.pushBackEclIndex(-1, eclIndex[i]);
else
commAboveBelow.pushBackEclIndex(eclIndex[i-1], eclIndex[i]);
}
commAboveBelow.endReset();
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
auto a = above.begin()+1;
std::for_each(current.begin(), current.begin() + (current.size()-1),
[&a](double v){ BOOST_CHECK(*(a++) == v);});
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
auto b = below.begin();
std::for_each(current.begin()+1, current.end(),
[&b](double v){ BOOST_CHECK(*(b++) == v);});
}
}
std::vector<int> createGlobalEclIndex(const Opm::ParallelWellInfo::Communication& comm)
{
std::vector<int> globalEclIndex = {0, 1, 2, 3, 7 , 8, 10, 11};
auto oldSize = globalEclIndex.size();
std::size_t globalSize = numPerProc * comm.size();
auto lastIndex = globalEclIndex.back();
globalEclIndex.resize(globalSize);
if ( globalSize > oldSize)
{
++lastIndex;
for(auto entry = globalEclIndex.begin() + oldSize;
entry != globalEclIndex.end(); ++entry, ++lastIndex)
{
*entry = lastIndex;
}
}
return globalEclIndex;
}
template<class C>
std::vector<double> populateCommAbove(C& commAboveBelow,
const Opm::ParallelWellInfo::Communication& comm,
const std::vector<int>& globalEclIndex,
const std::vector<double> globalCurrent,
int num_component = 1,
bool local_consecutive = false)
{
auto size = numPerProc * num_component;
std::vector<double> current(size);
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size()/num_component; i++)
{
auto gi = local_consecutive ? comm.rank() * numPerProc + i : comm.rank() + comm.size() * i;
if (gi==0)
{
commAboveBelow.pushBackEclIndex(-1, globalEclIndex[gi]);
}
else
{
commAboveBelow.pushBackEclIndex(globalEclIndex[gi-1], globalEclIndex[gi]);
}
for(int c = 0; c < num_component; ++c)
current[i * num_component + c] = globalCurrent[gi * num_component + c];
}
commAboveBelow.endReset();
return current;
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowParallel)
{
auto comm = Opm::ParallelWellInfo::Communication(Dune::MPIHelper::getCommunicator());
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
auto globalEclIndex = createGlobalEclIndex(comm);
std::vector<double> globalCurrent(globalEclIndex.size());
std::transform(globalEclIndex.begin(), globalEclIndex.end(), globalCurrent.begin(),
[](double v){ return 1+10.0*v;});
auto current = populateCommAbove(commAboveBelow, comm, globalEclIndex, globalCurrent);
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
if (comm.rank() == 0)
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
for (std::size_t i = 0; i < current.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
if (gi > 0)
{
BOOST_CHECK(above[i]==globalCurrent[gi-1]);
}
}
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
if (comm.rank() == comm.size() - 1)
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
for (std::size_t i = 0; i < current.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
if (gi < globalCurrent.size() - 1)
{
BOOST_CHECK(below[i]==globalCurrent[gi+1]);
}
}
}
}
template<class Iter, class C>
void initRandomNumbers(Iter begin, Iter end, C comm)
{
// Initialize with random numbers.
std::random_device rndDevice;
std::mt19937 mersenneEngine {rndDevice()}; // Generates random integers
std::uniform_int_distribution<int> dist {1, 100};
auto gen = [&dist, &mersenneEngine](){
return dist(mersenneEngine);
};
std::generate(begin, end, gen);
comm.broadcast(&(*begin), end-begin, 0);
}
BOOST_AUTO_TEST_CASE(PartialSumself)
{
auto comm = Dune::MPIHelper::getLocalCommunicator();
Opm::CommunicateAboveBelow commAboveBelow{ comm };
std::vector<int> eclIndex = {0, 1, 2, 3, 7 , 8, 10, 11};
std::vector<double> current(eclIndex.size());
std::transform(eclIndex.begin(), eclIndex.end(), current.begin(),
[](double v){ return 1+10.0*v;});
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
if (i==0)
commAboveBelow.pushBackEclIndex(-1, eclIndex[i]);
else
commAboveBelow.pushBackEclIndex(eclIndex[i-1], eclIndex[i]);
}
commAboveBelow.endReset();
initRandomNumbers(std::begin(current), std::end(current),
Opm::ParallelWellInfo::Communication(comm));
auto stdCopy = current;
std::partial_sum(std::begin(stdCopy), std::end(stdCopy), std::begin(stdCopy));
commAboveBelow.partialSumPerfValues(std::begin(current), std::end(current));
BOOST_CHECK_EQUAL_COLLECTIONS(std::begin(stdCopy), std::end(stdCopy),
std::begin(current), std::end(current));
}
BOOST_AUTO_TEST_CASE(PartialSumParallel)
{
auto comm = Opm::ParallelWellInfo::Communication(Dune::MPIHelper::getCommunicator());
Opm::CommunicateAboveBelow commAboveBelow{ comm };
auto globalEclIndex = createGlobalEclIndex(comm);
std::vector<double> globalCurrent(globalEclIndex.size());
initRandomNumbers(std::begin(globalCurrent), std::end(globalCurrent),
Opm::ParallelWellInfo::Communication(comm));
auto localCurrent = populateCommAbove(commAboveBelow, comm,
globalEclIndex, globalCurrent);
auto globalPartialSum = globalCurrent;
std::partial_sum(std::begin(globalPartialSum), std::end(globalPartialSum), std::begin(globalPartialSum));
commAboveBelow.partialSumPerfValues(std::begin(localCurrent), std::end(localCurrent));
for (std::size_t i = 0; i < localCurrent.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
BOOST_CHECK(localCurrent[i]==globalPartialSum[gi]);
}
}
void testGlobalPerfFactoryParallel(int num_component, bool local_consecutive = false)
{
auto comm = Opm::ParallelWellInfo::Communication(Dune::MPIHelper::getCommunicator());
Opm::ParallelWellInfo wellInfo{ {"Test", true }, comm };
auto globalEclIndex = createGlobalEclIndex(comm);
std::vector<double> globalCurrent(globalEclIndex.size() * num_component);
std::vector<double> globalAdd(globalEclIndex.size() * num_component);
initRandomNumbers(std::begin(globalCurrent), std::end(globalCurrent),
comm);
initRandomNumbers(std::begin(globalAdd), std::end(globalAdd),
comm);
auto localCurrent = populateCommAbove(wellInfo, comm, globalEclIndex,
globalCurrent, num_component,
local_consecutive);
// A hack to get local values to add.
Opm::ParallelWellInfo dummy{ {"Test", true }, comm };
auto localAdd = populateCommAbove(dummy, comm, globalEclIndex,
globalAdd, num_component,
local_consecutive);
const auto& factory = wellInfo.getGlobalPerfContainerFactory();
auto globalCreated = factory.createGlobal(localCurrent, num_component);
BOOST_CHECK_EQUAL_COLLECTIONS(std::begin(globalCurrent), std::end(globalCurrent),
std::begin(globalCreated), std::end(globalCreated));
std::transform(std::begin(globalAdd), std::end(globalAdd),
std::begin(globalCreated), std::begin(globalCreated),
std::plus<double>());
auto globalSol = globalCurrent;
std::transform(std::begin(globalAdd), std::end(globalAdd),
std::begin(globalSol), std::begin(globalSol),
std::plus<double>());
auto localSol = localCurrent;
std::transform(std::begin(localAdd), std::end(localAdd),
std::begin(localSol), std::begin(localSol),
std::plus<double>());
factory.copyGlobalToLocal(globalCreated, localCurrent, num_component);
for (std::size_t i = 0; i < localCurrent.size() / num_component; ++i)
{
auto gi = local_consecutive ? comm.rank() * numPerProc + i :
comm.rank() + comm.size() * i;
for (int c = 0; c < num_component; ++c)
{
BOOST_CHECK(localCurrent[i * num_component + c]==globalSol[gi * num_component + c]);
BOOST_CHECK(localSol[i * num_component + c] == localCurrent[i * num_component + c]);
}
}
}
BOOST_AUTO_TEST_CASE(GlobalPerfFactoryParallel1)
{
testGlobalPerfFactoryParallel(1);
testGlobalPerfFactoryParallel(3);
}
BOOST_AUTO_TEST_CASE(EmptyWell) {
auto comm = Opm::ParallelWellInfo::Communication(Dune::MPIHelper::getCommunicator());
Opm::ParallelWellInfo pw({"WELL1", true}, comm);
pw.communicateFirstPerforation(false);
double local_p = 1;
auto global_p = pw.broadcastFirstPerforationValue(local_p);
BOOST_CHECK_EQUAL(local_p, global_p);
}