mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-22 15:33:29 -06:00
709b8c0b82
In our config.h, HAVE_BOOST is defined (empty). In dune-istl it is expected to be defined to 0 or 1.
295 lines
8.9 KiB
C++
295 lines
8.9 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#if HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <opm/core/linalg/LinearSolverIstl.hpp>
|
|
|
|
// Work around the fact that istl headers expect
|
|
// HAVE_BOOST to be 1, and not just defined.
|
|
#undef HAVE_BOOST
|
|
#define HAVE_BOOST 1
|
|
|
|
// TODO: clean up includes.
|
|
#include <dune/common/deprecated.hh>
|
|
#include <dune/istl/bvector.hh>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
#include <dune/istl/operators.hh>
|
|
#include <dune/istl/io.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
#include <dune/istl/solvers.hh>
|
|
#include <dune/istl/paamg/amg.hh>
|
|
|
|
#include <stdexcept>
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
using namespace Dune; // While not great, it's okay in a cpp file like this.
|
|
|
|
namespace {
|
|
typedef FieldVector<double, 1 > VectorBlockType;
|
|
typedef FieldMatrix<double, 1, 1> MatrixBlockType;
|
|
typedef BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef BlockVector<VectorBlockType> Vector;
|
|
typedef MatrixAdapter<Mat,Vector,Vector> Operator;
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveCG_ILU0(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity);
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveCG_AMG(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity);
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveBiCGStab_ILU0(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity);
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
LinearSolverIstl::LinearSolverIstl()
|
|
: linsolver_residual_tolerance_(1e-8),
|
|
linsolver_verbosity_(0),
|
|
linsolver_type_(CG_AMG),
|
|
linsolver_save_system_(false),
|
|
linsolver_max_iterations_(0)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
LinearSolverIstl::LinearSolverIstl(const parameter::ParameterGroup& param)
|
|
: linsolver_residual_tolerance_(1e-8),
|
|
linsolver_verbosity_(0),
|
|
linsolver_type_(CG_AMG),
|
|
linsolver_save_system_(false),
|
|
linsolver_max_iterations_(0)
|
|
{
|
|
linsolver_residual_tolerance_ = param.getDefault("linsolver_residual_tolerance", linsolver_residual_tolerance_);
|
|
linsolver_verbosity_ = param.getDefault("linsolver_verbosity", linsolver_verbosity_);
|
|
linsolver_type_ = LinsolverType(param.getDefault("linsolver_type", int(linsolver_type_)));
|
|
linsolver_save_system_ = param.getDefault("linsolver_save_system", linsolver_save_system_);
|
|
if (linsolver_save_system_) {
|
|
linsolver_save_filename_ = param.getDefault("linsolver_save_filename", std::string("linsys"));
|
|
}
|
|
linsolver_max_iterations_ = param.getDefault("linsolver_max_iterations", linsolver_max_iterations_);
|
|
}
|
|
|
|
|
|
|
|
|
|
LinearSolverIstl::~LinearSolverIstl()
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
LinearSolverIstl::solve(const int size,
|
|
const int nonzeros,
|
|
const int* ia,
|
|
const int* ja,
|
|
const double* sa,
|
|
const double* rhs,
|
|
double* solution) const
|
|
{
|
|
// Build Istl structures from input.
|
|
// System matrix
|
|
Mat A(size, size, nonzeros, Mat::row_wise);
|
|
for (Mat::CreateIterator row = A.createbegin(); row != A.createend(); ++row) {
|
|
int ri = row.index();
|
|
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
|
row.insert(ja[i]);
|
|
}
|
|
}
|
|
for (int ri = 0; ri < size; ++ri) {
|
|
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
|
A[ri][ja[i]] = sa[i];
|
|
}
|
|
}
|
|
// System RHS
|
|
Vector b(size);
|
|
std::copy(rhs, rhs + size, b.begin());
|
|
// System solution
|
|
Vector x(size);
|
|
x = 0.0;
|
|
|
|
if (linsolver_save_system_)
|
|
{
|
|
// Save system to files.
|
|
writeMatrixToMatlab(A, linsolver_save_filename_ + "-mat");
|
|
std::string rhsfile(linsolver_save_filename_ + "-rhs");
|
|
std::ofstream rhsf(rhsfile.c_str());
|
|
rhsf.precision(15);
|
|
rhsf.setf(std::ios::scientific | std::ios::showpos);
|
|
std::copy(b.begin(), b.end(),
|
|
std::ostream_iterator<VectorBlockType>(rhsf, "\n"));
|
|
}
|
|
|
|
int maxit = linsolver_max_iterations_;
|
|
if (maxit == 0) {
|
|
maxit = A.N();
|
|
}
|
|
|
|
LinearSolverReport res;
|
|
switch (linsolver_type_) {
|
|
case CG_ILU0:
|
|
res = solveCG_ILU0(A, x, b, linsolver_residual_tolerance_, maxit, linsolver_verbosity_);
|
|
break;
|
|
case CG_AMG:
|
|
res = solveCG_AMG(A, x, b, linsolver_residual_tolerance_, maxit, linsolver_verbosity_);
|
|
break;
|
|
case BiCGStab_ILU0:
|
|
res = solveBiCGStab_ILU0(A, x, b, linsolver_residual_tolerance_, maxit, linsolver_verbosity_);
|
|
break;
|
|
default:
|
|
std::cerr << "Unknown linsolver_type: " << int(linsolver_type_) << '\n';
|
|
throw std::runtime_error("Unknown linsolver_type");
|
|
}
|
|
std::copy(x.begin(), x.end(), solution);
|
|
return res;
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveCG_ILU0(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity)
|
|
{
|
|
Operator opA(A);
|
|
|
|
// Construct preconditioner.
|
|
SeqILU0<Mat,Vector,Vector> precond(A, 1.0);
|
|
|
|
// Construct linear solver.
|
|
CGSolver<Vector> linsolve(opA, precond, tolerance, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
InverseOperatorResult result;
|
|
linsolve.apply(x, b, result);
|
|
|
|
// Output results.
|
|
LinearSolverInterface::LinearSolverReport res;
|
|
res.converged = result.converged;
|
|
res.iterations = result.iterations;
|
|
res.residual_reduction = result.reduction;
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveCG_AMG(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity)
|
|
{
|
|
// Solve with AMG solver.
|
|
#define FIRST_DIAGONAL 1
|
|
#define SYMMETRIC 1
|
|
#define SMOOTHER_ILU 1
|
|
#define ANISOTROPIC_3D 0
|
|
|
|
#if FIRST_DIAGONAL
|
|
typedef Amg::FirstDiagonal CouplingMetric;
|
|
#else
|
|
typedef Amg::RowSum CouplingMetric;
|
|
#endif
|
|
|
|
#if SYMMETRIC
|
|
typedef Amg::SymmetricCriterion<Mat,CouplingMetric> CriterionBase;
|
|
#else
|
|
typedef Amg::UnSymmetricCriterion<Mat,CouplingMetric> CriterionBase;
|
|
#endif
|
|
|
|
#if SMOOTHER_ILU
|
|
typedef SeqILU0<Mat,Vector,Vector> Smoother;
|
|
#else
|
|
typedef SeqSSOR<Mat,Vector,Vector> Smoother;
|
|
#endif
|
|
typedef Amg::CoarsenCriterion<CriterionBase> Criterion;
|
|
typedef Amg::AMG<Operator,Vector,Smoother> Precond;
|
|
|
|
Operator opA(A);
|
|
|
|
// Construct preconditioner.
|
|
double relax = 1;
|
|
Precond::SmootherArgs smootherArgs;
|
|
smootherArgs.relaxationFactor = relax;
|
|
Criterion criterion;
|
|
criterion.setDebugLevel(verbosity);
|
|
#if ANISOTROPIC_3D
|
|
criterion.setDefaultValuesAnisotropic(3, 2);
|
|
#endif
|
|
Precond precond(opA, criterion, smootherArgs);
|
|
|
|
// Construct linear solver.
|
|
CGSolver<Vector> linsolve(opA, precond, tolerance, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
InverseOperatorResult result;
|
|
linsolve.apply(x, b, result);
|
|
|
|
// Output results.
|
|
LinearSolverInterface::LinearSolverReport res;
|
|
res.converged = result.converged;
|
|
res.iterations = result.iterations;
|
|
res.residual_reduction = result.reduction;
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
LinearSolverInterface::LinearSolverReport
|
|
solveBiCGStab_ILU0(const Mat& A, Vector& x, Vector& b, double tolerance, int maxit, int verbosity)
|
|
{
|
|
Operator opA(A);
|
|
|
|
// Construct preconditioner.
|
|
SeqILU0<Mat,Vector,Vector> precond(A, 1.0);
|
|
|
|
// Construct linear solver.
|
|
BiCGSTABSolver<Vector> linsolve(opA, precond, tolerance, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
InverseOperatorResult result;
|
|
linsolve.apply(x, b, result);
|
|
|
|
// Output results.
|
|
LinearSolverInterface::LinearSolverReport res;
|
|
res.converged = result.converged;
|
|
res.iterations = result.iterations;
|
|
res.residual_reduction = result.reduction;
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
} // namespace Opm
|
|
|