mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-23 16:00:01 -06:00
526 lines
20 KiB
C++
526 lines
20 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <opm/core/WellsManager.hpp>
|
|
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/newwells.h>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
|
|
#include <tr1/array>
|
|
#include <cmath>
|
|
|
|
|
|
// Helper structs and functions for the implementation.
|
|
namespace
|
|
{
|
|
|
|
struct WellData
|
|
{
|
|
well_type type;
|
|
control_type control;
|
|
double target;
|
|
double reference_bhp_depth;
|
|
surface_component injected_phase;
|
|
};
|
|
|
|
|
|
struct PerfData
|
|
{
|
|
int cell;
|
|
double well_index;
|
|
};
|
|
|
|
|
|
int prod_control_mode(const std::string& control)
|
|
{
|
|
const int num_prod_control_modes = 8;
|
|
static std::string prod_control_modes[num_prod_control_modes] =
|
|
{std::string("ORAT"), std::string("WRAT"), std::string("GRAT"),
|
|
std::string("LRAT"), std::string("RESV"), std::string("BHP"),
|
|
std::string("THP"), std::string("GRUP") };
|
|
int m = -1;
|
|
for (int i=0; i<num_prod_control_modes; ++i) {
|
|
if (control == prod_control_modes[i]) {
|
|
m = i;
|
|
break;
|
|
}
|
|
}
|
|
if (m >= 0) {
|
|
return m;
|
|
} else {
|
|
THROW("Unknown well control mode = " << control << " in input file");
|
|
}
|
|
}
|
|
|
|
|
|
int inje_control_mode(const std::string& control)
|
|
{
|
|
const int num_inje_control_modes = 5;
|
|
static std::string inje_control_modes[num_inje_control_modes] =
|
|
{std::string("RATE"), std::string("RESV"), std::string("BHP"),
|
|
std::string("THP"), std::string("GRUP") };
|
|
int m = -1;
|
|
for (int i=0; i<num_inje_control_modes; ++i) {
|
|
if (control == inje_control_modes[i]) {
|
|
m = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (m >= 0) {
|
|
return m;
|
|
} else {
|
|
THROW("Unknown well control mode = " << control << " in input file");
|
|
}
|
|
}
|
|
|
|
|
|
std::tr1::array<double, 3> getCubeDim(const UnstructuredGrid& grid, int cell)
|
|
{
|
|
using namespace std;
|
|
tr1::array<double, 3> cube;
|
|
int num_local_faces = grid.cell_facepos[cell + 1] - grid.cell_facepos[cell];
|
|
vector<double> x(num_local_faces);
|
|
vector<double> y(num_local_faces);
|
|
vector<double> z(num_local_faces);
|
|
for (int lf=0; lf<num_local_faces; ++ lf) {
|
|
int face = grid.cell_faces[grid.cell_facepos[cell] + lf];
|
|
const double* centroid = &grid.face_centroids[grid.dimensions*face];
|
|
x[lf] = centroid[0];
|
|
y[lf] = centroid[1];
|
|
z[lf] = centroid[2];
|
|
}
|
|
cube[0] = *max_element(x.begin(), x.end()) - *min_element(x.begin(), x.end());
|
|
cube[1] = *max_element(y.begin(), y.end()) - *min_element(y.begin(), y.end());
|
|
cube[2] = *max_element(z.begin(), z.end()) - *min_element(z.begin(), z.end());
|
|
return cube;
|
|
}
|
|
|
|
// Use the Peaceman well model to compute well indices.
|
|
// radius is the radius of the well.
|
|
// cubical contains [dx, dy, dz] of the cell.
|
|
// (Note that the well model asumes that each cell is a cuboid).
|
|
// cell_permeability is the permeability tensor of the given cell.
|
|
// returns the well index of the cell.
|
|
double computeWellIndex(const double radius,
|
|
const std::tr1::array<double, 3>& cubical,
|
|
const double* cell_permeability,
|
|
const double skin_factor)
|
|
{
|
|
using namespace std;
|
|
// sse: Using the Peaceman model.
|
|
// NOTE: The formula is valid for cartesian grids, so the result can be a bit
|
|
// (in worst case: there is no upper bound for the error) off the mark.
|
|
const double permx = cell_permeability[0];
|
|
const double permy = cell_permeability[3*1 + 1];
|
|
double effective_perm = sqrt(permx*permy);
|
|
// sse: The formula for r_0 can be found on page 39 of
|
|
// "Well Models for Mimetic Finite Differerence Methods and Improved Representation
|
|
// of Wells in Multiscale Methods" by Ingeborg Skjelkvåle Ligaarden.
|
|
assert(permx > 0.0);
|
|
assert(permy > 0.0);
|
|
double kxoy = permx / permy;
|
|
double kyox = permy / permx;
|
|
double r0_denominator = pow(kyox, 0.25) + pow(kxoy, 0.25);
|
|
double r0_numerator = sqrt((sqrt(kyox)*cubical[0]*cubical[0]) +
|
|
(sqrt(kxoy)*cubical[1]*cubical[1]));
|
|
assert(r0_denominator > 0.0);
|
|
double r0 = 0.28 * r0_numerator / r0_denominator;
|
|
assert(radius > 0.0);
|
|
assert(r0 > 0.0);
|
|
if (r0 < radius) {
|
|
std::cout << "ERROR: Too big well radius detected.";
|
|
std::cout << "Specified well radius is " << radius
|
|
<< " while r0 is " << r0 << ".\n";
|
|
}
|
|
const long double two_pi = 6.2831853071795864769252867665590057683943387987502116419498;
|
|
double wi_denominator = log(r0 / radius) + skin_factor;
|
|
double wi_numerator = two_pi * cubical[2];
|
|
assert(wi_denominator > 0.0);
|
|
double wi = effective_perm * wi_numerator / wi_denominator;
|
|
assert(wi > 0.0);
|
|
return wi;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
/// Default constructor.
|
|
WellsManager::WellsManager()
|
|
: w_(0)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
/// Construct wells from deck.
|
|
WellsManager::WellsManager(const Opm::EclipseGridParser& deck,
|
|
const UnstructuredGrid& grid,
|
|
const double* permeability)
|
|
: w_(0)
|
|
{
|
|
if (grid.dimensions != 3) {
|
|
THROW("We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional.");
|
|
}
|
|
// NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells.
|
|
std::vector<std::string> keywords;
|
|
keywords.push_back("WELSPECS");
|
|
keywords.push_back("COMPDAT");
|
|
// keywords.push_back("WELTARG");
|
|
if (!deck.hasFields(keywords)) {
|
|
MESSAGE("Missing well keywords in deck, initializing no wells.");
|
|
return;
|
|
}
|
|
if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) {
|
|
THROW("Needed field is missing in file");
|
|
}
|
|
|
|
// These data structures will be filled in this constructor,
|
|
// then used to initialize the Wells struct.
|
|
std::vector<std::string> well_names;
|
|
std::vector<WellData> well_data;
|
|
std::vector<std::vector<PerfData> > wellperf_data;
|
|
|
|
// Get WELSPECS data
|
|
const WELSPECS& welspecs = deck.getWELSPECS();
|
|
const int num_wells = welspecs.welspecs.size();
|
|
well_names.reserve(num_wells);
|
|
well_data.reserve(num_wells);
|
|
wellperf_data.resize(num_wells);
|
|
for (int w = 0; w < num_wells; ++w) {
|
|
well_names.push_back(welspecs.welspecs[w].name_);
|
|
WellData wd;
|
|
well_data.push_back(wd);
|
|
well_data.back().reference_bhp_depth = welspecs.welspecs[w].datum_depth_BHP_;
|
|
if (welspecs.welspecs[w].datum_depth_BHP_ < 0.0) {
|
|
// Set refdepth to a marker value, will be changed
|
|
// after getting perforation data to the centroid of
|
|
// the cell of the top well perforation.
|
|
well_data.back().reference_bhp_depth = -1e100;
|
|
}
|
|
}
|
|
|
|
// global_cell is a map from compressed cells to Cartesian grid cells.
|
|
// We must make the inverse lookup.
|
|
const int* global_cell = grid.global_cell;
|
|
const int* cpgdim = grid.cartdims;
|
|
std::map<int,int> cartesian_to_compressed;
|
|
for (int i = 0; i < grid.number_of_cells; ++i) {
|
|
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
|
|
}
|
|
|
|
// Get COMPDAT data
|
|
const COMPDAT& compdat = deck.getCOMPDAT();
|
|
const int num_compdat = compdat.compdat.size();
|
|
for (int kw = 0; kw < num_compdat; ++kw) {
|
|
// Extract well name, or the part of the well name that
|
|
// comes before the '*'.
|
|
std::string name = compdat.compdat[kw].well_;
|
|
std::string::size_type len = name.find('*');
|
|
if (len != std::string::npos) {
|
|
name = name.substr(0, len);
|
|
}
|
|
// Look for well with matching name.
|
|
bool found = false;
|
|
for (int wix = 0; wix < num_wells; ++wix) {
|
|
if (well_names[wix].compare(0,len, name) == 0) { // equal
|
|
// We have a matching name.
|
|
int ix = compdat.compdat[kw].grid_ind_[0] - 1;
|
|
int jy = compdat.compdat[kw].grid_ind_[1] - 1;
|
|
int kz1 = compdat.compdat[kw].grid_ind_[2] - 1;
|
|
int kz2 = compdat.compdat[kw].grid_ind_[3] - 1;
|
|
for (int kz = kz1; kz <= kz2; ++kz) {
|
|
int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz);
|
|
std::map<int, int>::const_iterator cgit =
|
|
cartesian_to_compressed.find(cart_grid_indx);
|
|
if (cgit == cartesian_to_compressed.end()) {
|
|
THROW("Cell with i,j,k indices " << ix << ' ' << jy << ' '
|
|
<< kz << " not found in grid!");
|
|
}
|
|
int cell = cgit->second;
|
|
PerfData pd;
|
|
pd.cell = cell;
|
|
if (compdat.compdat[kw].connect_trans_fac_ > 0.0) {
|
|
pd.well_index = compdat.compdat[kw].connect_trans_fac_;
|
|
} else {
|
|
double radius = 0.5*compdat.compdat[kw].diameter_;
|
|
if (radius <= 0.0) {
|
|
radius = 0.5*unit::feet;
|
|
MESSAGE("**** Warning: Well bore internal radius set to " << radius);
|
|
}
|
|
std::tr1::array<double, 3> cubical = getCubeDim(grid, cell);
|
|
const double* cell_perm = &permeability[grid.dimensions*grid.dimensions*cell];
|
|
pd.well_index = computeWellIndex(radius, cubical, cell_perm,
|
|
compdat.compdat[kw].skin_factor_);
|
|
}
|
|
wellperf_data[wix].push_back(pd);
|
|
}
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
THROW("Undefined well name: " << compdat.compdat[kw].well_
|
|
<< " in COMPDAT");
|
|
}
|
|
}
|
|
|
|
// Set up reference depths that were defaulted. Count perfs.
|
|
int num_perfs = 0;
|
|
for (int w = 0; w < num_wells; ++w) {
|
|
num_perfs += wellperf_data[w].size();
|
|
if (well_data[w].reference_bhp_depth == -1e100) {
|
|
// It was defaulted. Set reference depth to minimum perforation depth.
|
|
double min_depth = 1e100;
|
|
int num_wperfs = wellperf_data[w].size();
|
|
for (int perf = 0; perf < num_wperfs; ++perf) {
|
|
double depth = grid.cell_centroids[3*wellperf_data[w][perf].cell + 2];
|
|
min_depth = std::min(min_depth, depth);
|
|
}
|
|
well_data[w].reference_bhp_depth = min_depth;
|
|
}
|
|
}
|
|
|
|
// Get WCONINJE data
|
|
if (deck.hasField("WCONINJE")) {
|
|
const WCONINJE& wconinjes = deck.getWCONINJE();
|
|
const int num_wconinjes = wconinjes.wconinje.size();
|
|
for (int kw = 0; kw < num_wconinjes; ++kw) {
|
|
// Extract well name, or the part of the well name that
|
|
// comes before the '*'.
|
|
std::string name = wconinjes.wconinje[kw].well_;
|
|
std::string::size_type len = name.find('*');
|
|
if (len != std::string::npos) {
|
|
name = name.substr(0, len);
|
|
}
|
|
bool well_found = false;
|
|
for (int wix = 0; wix < num_wells; ++wix) {
|
|
if (well_names[wix].compare(0,len, name) == 0) { //equal
|
|
well_found = true;
|
|
well_data[wix].type = INJECTOR;
|
|
int m = inje_control_mode(wconinjes.wconinje[kw].control_mode_);
|
|
switch(m) {
|
|
case 0: // RATE
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconinjes.wconinje[kw].surface_flow_max_rate_;
|
|
break;
|
|
case 1: // RESV
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconinjes.wconinje[kw].fluid_volume_max_rate_;
|
|
break;
|
|
case 2: // BHP
|
|
well_data[wix].control = BHP;
|
|
well_data[wix].target = wconinjes.wconinje[kw].BHP_limit_;
|
|
break;
|
|
case 3: // THP
|
|
well_data[wix].control = BHP;
|
|
well_data[wix].target = wconinjes.wconinje[kw].THP_limit_;
|
|
break;
|
|
default:
|
|
THROW("Unknown well control mode; WCONIJE = "
|
|
<< wconinjes.wconinje[kw].control_mode_
|
|
<< " in input file");
|
|
}
|
|
if (wconinjes.wconinje[kw].injector_type_ == "WATER") {
|
|
well_data[wix].injected_phase = WATER;
|
|
} else if (wconinjes.wconinje[kw].injector_type_ == "OIL") {
|
|
well_data[wix].injected_phase = OIL;
|
|
} else if (wconinjes.wconinje[kw].injector_type_ == "GAS") {
|
|
well_data[wix].injected_phase = GAS;
|
|
} else {
|
|
THROW("Error in injector specification, found no known fluid type.");
|
|
}
|
|
}
|
|
}
|
|
if (!well_found) {
|
|
THROW("Undefined well name: " << wconinjes.wconinje[kw].well_
|
|
<< " in WCONINJE");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get WCONPROD data
|
|
if (deck.hasField("WCONPROD")) {
|
|
const WCONPROD& wconprods = deck.getWCONPROD();
|
|
const int num_wconprods = wconprods.wconprod.size();
|
|
for (int kw = 0; kw < num_wconprods; ++kw) {
|
|
std::string name = wconprods.wconprod[kw].well_;
|
|
std::string::size_type len = name.find('*');
|
|
if (len != std::string::npos) {
|
|
name = name.substr(0, len);
|
|
}
|
|
|
|
bool well_found = false;
|
|
for (int wix = 0; wix < num_wells; ++wix) {
|
|
if (well_names[wix].compare(0,len, name) == 0) { //equal
|
|
well_found = true;
|
|
well_data[wix].type = PRODUCER;
|
|
int m = prod_control_mode(wconprods.wconprod[kw].control_mode_);
|
|
switch(m) {
|
|
case 0: // ORAT
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconprods.wconprod[kw].oil_max_rate_;
|
|
break;
|
|
case 1: // WRAT
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconprods.wconprod[kw].water_max_rate_;
|
|
break;
|
|
case 2: // GRAT
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconprods.wconprod[kw].gas_max_rate_;
|
|
break;
|
|
case 3: // LRAT
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconprods.wconprod[kw].liquid_max_rate_;
|
|
break;
|
|
case 4: // RESV
|
|
well_data[wix].control = RATE;
|
|
well_data[wix].target = wconprods.wconprod[kw].fluid_volume_max_rate_;
|
|
break;
|
|
case 5: // BHP
|
|
well_data[wix].control = BHP;
|
|
well_data[wix].target = wconprods.wconprod[kw].BHP_limit_;
|
|
break;
|
|
case 6: // THP
|
|
well_data[wix].control = BHP;
|
|
well_data[wix].target = wconprods.wconprod[kw].THP_limit_;
|
|
break;
|
|
default:
|
|
THROW("Unknown well control mode; WCONPROD = "
|
|
<< wconprods.wconprod[kw].control_mode_
|
|
<< " in input file");
|
|
}
|
|
}
|
|
}
|
|
if (!well_found) {
|
|
THROW("Undefined well name: " << wconprods.wconprod[kw].well_
|
|
<< " in WCONPROD");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get WELTARG data
|
|
if (deck.hasField("WELTARG")) {
|
|
const WELTARG& weltargs = deck.getWELTARG();
|
|
const int num_weltargs = weltargs.weltarg.size();
|
|
for (int kw = 0; kw < num_weltargs; ++kw) {
|
|
std::string name = weltargs.weltarg[kw].well_;
|
|
std::string::size_type len = name.find('*');
|
|
if (len != std::string::npos) {
|
|
name = name.substr(0, len);
|
|
}
|
|
bool well_found = false;
|
|
for (int wix = 0; wix < num_wells; ++wix) {
|
|
if (well_names[wix].compare(0,len, name) == 0) { //equal
|
|
well_found = true;
|
|
well_data[wix].target = weltargs.weltarg[kw].new_value_;
|
|
break;
|
|
}
|
|
}
|
|
if (!well_found) {
|
|
THROW("Undefined well name: " << weltargs.weltarg[kw].well_
|
|
<< " in WELTARG");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Debug output.
|
|
#define EXTRA_OUTPUT
|
|
#ifdef EXTRA_OUTPUT
|
|
std::cout << "\t WELL DATA" << std::endl;
|
|
for(int i = 0; i< num_wells; ++i) {
|
|
std::cout << i << ": " << well_data[i].type << " "
|
|
<< well_data[i].control << " " << well_data[i].target
|
|
<< std::endl;
|
|
}
|
|
|
|
std::cout << "\n\t PERF DATA" << std::endl;
|
|
for(int i=0; i< int(wellperf_data.size()); ++i) {
|
|
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
|
|
std::cout << i << ": " << wellperf_data[i][j].cell << " "
|
|
<< wellperf_data[i][j].well_index << std::endl;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set up the Wells struct.
|
|
w_ = wells_create(num_wells, num_perfs);
|
|
if (!w_) {
|
|
THROW("Failed creating Wells struct.");
|
|
}
|
|
double fracs[3][3] = { { 1.0, 0.0, 0.0 },
|
|
{ 0.0, 1.0, 0.0 },
|
|
{ 0.0, 0.0, 1.0 } };
|
|
for (int w = 0; w < num_wells; ++w) {
|
|
int nperf = wellperf_data[w].size();
|
|
std::vector<int> cells(nperf);
|
|
std::vector<double> wi(nperf);
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
cells[perf] = wellperf_data[w][perf].cell;
|
|
wi[perf] = wellperf_data[w][perf].well_index;
|
|
}
|
|
const double* zfrac = (well_data[w].type == INJECTOR) ? fracs[well_data[w].injected_phase] : 0;
|
|
int ok = wells_add(well_data[w].type, well_data[w].reference_bhp_depth, nperf,
|
|
zfrac, &cells[0], &wi[0], w_);
|
|
if (!ok) {
|
|
THROW("Failed to add a well.");
|
|
}
|
|
// We only append a single control at this point.
|
|
// TODO: Handle multiple controls.
|
|
ok = well_controls_append(well_data[w].control, well_data[w].target, w_->ctrls[w]);
|
|
if (!ok) {
|
|
THROW("Failed to add well controls.");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Destructor.
|
|
WellsManager::~WellsManager()
|
|
{
|
|
wells_destroy(w_);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Access the managed Wells.
|
|
/// The method is named similarly to c_str() in std::string,
|
|
/// to make it clear that we are returning a C-compatible struct.
|
|
const Wells* WellsManager::c_wells() const
|
|
{
|
|
return w_;
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|