mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
... since the "grids" in that folder are slowly accumulating information. (e.g. the ART grid for the fracture mapper and ECLIPSE decks in the future.)
584 lines
21 KiB
C++
584 lines
21 KiB
C++
/*
|
|
Copyright (C) 2009-2013 by Andreas Lauser
|
|
Copyright (C) 2010 by Melanie Darcis
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::ReservoirProblem
|
|
*/
|
|
#ifndef EWOMS_RESERVOIR_PROBLEM_HH
|
|
#define EWOMS_RESERVOIR_PROBLEM_HH
|
|
|
|
#include <ewoms/models/blackoil/blackoilproperties.hh>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class ReservoirProblem;
|
|
}
|
|
|
|
namespace Opm {
|
|
namespace Properties {
|
|
|
|
NEW_TYPE_TAG(ReservoirBaseProblem);
|
|
|
|
// Maximum depth of the reservoir
|
|
NEW_PROP_TAG(MaxDepth);
|
|
// The temperature inside the reservoir
|
|
NEW_PROP_TAG(Temperature);
|
|
// The name of the simulation (used for writing VTK files)
|
|
NEW_PROP_TAG(SimulationName);
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(ReservoirBaseProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(ReservoirBaseProblem, Problem, Ewoms::ReservoirProblem<TypeTag>);
|
|
|
|
// Set the material Law
|
|
SET_PROP(ReservoirBaseProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
typedef Opm::
|
|
ThreePhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
|
|
|
|
public:
|
|
typedef Opm::LinearMaterial<Traits> type;
|
|
};
|
|
|
|
// Write the Newton convergence behavior to disk?
|
|
SET_BOOL_PROP(ReservoirBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(ReservoirBaseProblem, EnableGravity, true);
|
|
|
|
// Reuse the last linearization if possible?
|
|
SET_BOOL_PROP(ReservoirBaseProblem, EnableLinearizationRecycling, true);
|
|
|
|
// Enable constraint DOFs?
|
|
SET_BOOL_PROP(ReservoirBaseProblem, EnableConstraints, true);
|
|
|
|
// set the defaults for some problem specific properties
|
|
SET_SCALAR_PROP(ReservoirBaseProblem, MaxDepth, 2500);
|
|
SET_SCALAR_PROP(ReservoirBaseProblem, Temperature, 293.15);
|
|
SET_STRING_PROP(ReservoirBaseProblem, SimulationName, "reservoir");
|
|
|
|
// The default for the end time of the simulation [s]
|
|
SET_SCALAR_PROP(ReservoirBaseProblem, EndTime, 100);
|
|
|
|
// The default for the initial time step size of the simulation [s]
|
|
SET_SCALAR_PROP(ReservoirBaseProblem, InitialTimeStepSize, 10);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(ReservoirBaseProblem, GridFile, "data/reservoir.dgf");
|
|
}} // namespace Properties, Opm
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup VcfvTestProblems
|
|
*
|
|
* \brief Some simple test problem for the black-oil VCVF discretization
|
|
* inspired by an oil reservoir.
|
|
*
|
|
* The domain is two-dimensional and exhibits a size of 6000m times
|
|
* 60m. Initially, the reservoir is assumed by oil with a bubble point
|
|
* pressure of 20 MPa, which also the initial pressure in the
|
|
* domain. No-flow boundaries are used for all boundaries. The
|
|
* permeability of the lower 10 m is reduced compared to the upper 10
|
|
* m of the domain witch capillary pressure always being
|
|
* neglected. Three wells are approximated using constraints: Two
|
|
* water-injector wells, one at the lower-left boundary one at the
|
|
* lower-right boundary and one producer well in the upper part of the
|
|
* center of the domain. The pressure for the producer is assumed to
|
|
* be 2/3 of the reservoir pressure, the injector wells use a pressure
|
|
* which is 50% above the reservoir pressure.
|
|
*/
|
|
template <class TypeTag>
|
|
class ReservoirProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
// Grid and world dimension
|
|
enum { dim = GridView::dimension };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
// copy some indices for convenience
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BlackOilFluidState) BlackOilFluidState;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
ReservoirProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{
|
|
eps_ = 1e-6;
|
|
|
|
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
|
|
maxDepth_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxDepth);
|
|
|
|
FluidSystem::initBegin();
|
|
std::vector<std::pair<Scalar, Scalar> > Bg
|
|
= { { 1.013529e+05, 9.998450e-01 },
|
|
{ 2.757903e+06, 3.075500e-02 },
|
|
{ 5.515806e+06, 1.537947e-02 },
|
|
{ 8.273709e+06, 1.021742e-02 },
|
|
{ 1.103161e+07, 7.662783e-03 },
|
|
{ 1.378951e+07, 6.151899e-03 },
|
|
{ 1.654742e+07, 5.108709e-03 },
|
|
{ 1.930532e+07, 4.378814e-03 },
|
|
{ 2.206322e+07, 3.857780e-03 },
|
|
{ 2.482113e+07, 3.388401e-03 },
|
|
{ 2.757903e+07, 3.049842e-03 } };
|
|
std::vector<std::pair<Scalar, Scalar> > Bo
|
|
= { { 1.013529e+05, 1.000000e+00 },
|
|
{ 2.757903e+06, 1.012000e+00 },
|
|
{ 5.515806e+06, 1.025500e+00 },
|
|
{ 8.273709e+06, 1.038000e+00 },
|
|
{ 1.103161e+07, 1.051000e+00 },
|
|
{ 1.378951e+07, 1.063000e+00 },
|
|
{ 1.654742e+07, 1.075000e+00 },
|
|
{ 1.930532e+07, 1.087000e+00 },
|
|
{ 2.206322e+07, 1.098500e+00 },
|
|
{ 2.482113e+07, 1.110000e+00 },
|
|
{ 2.757903e+07, 1.120000e+00 } };
|
|
std::vector<std::pair<Scalar, Scalar> > Rs
|
|
= { { 1.013529e+05, 0.000000e+00 },
|
|
{ 2.757903e+06, 2.938776e+01 },
|
|
{ 5.515806e+06, 5.966605e+01 },
|
|
{ 8.273709e+06, 8.905380e+01 },
|
|
{ 1.103161e+07, 1.184416e+02 },
|
|
{ 1.378951e+07, 1.474731e+02 },
|
|
{ 1.654742e+07, 1.754360e+02 },
|
|
{ 1.930532e+07, 2.012616e+02 },
|
|
{ 2.206322e+07, 2.261967e+02 },
|
|
{ 2.482113e+07, 2.475696e+02 },
|
|
{ 2.757903e+07, 2.671614e+02 } };
|
|
std::vector<std::pair<Scalar, Scalar> > muo
|
|
= { { 1.013529e+05, 1.200000e-03 },
|
|
{ 2.757903e+06, 1.170000e-03 },
|
|
{ 5.515806e+06, 1.140000e-03 },
|
|
{ 8.273709e+06, 1.110000e-03 },
|
|
{ 1.103161e+07, 1.080000e-03 },
|
|
{ 1.378951e+07, 1.060000e-03 },
|
|
{ 1.654742e+07, 1.030000e-03 },
|
|
{ 1.930532e+07, 1.000000e-03 },
|
|
{ 2.206322e+07, 9.800000e-04 },
|
|
{ 2.482113e+07, 9.500000e-04 },
|
|
{ 2.757903e+07, 9.400000e-04 } };
|
|
std::vector<std::pair<Scalar, Scalar> > mug
|
|
= { { 1.013529e+05, 1.250000e-05 },
|
|
{ 2.757903e+06, 1.300000e-05 },
|
|
{ 5.515806e+06, 1.350000e-05 },
|
|
{ 8.273709e+06, 1.400000e-05 },
|
|
{ 1.103161e+07, 1.450000e-05 },
|
|
{ 1.378951e+07, 1.500000e-05 },
|
|
{ 1.654742e+07, 1.550000e-05 },
|
|
{ 1.930532e+07, 1.600000e-05 },
|
|
{ 2.206322e+07, 1.650000e-05 },
|
|
{ 2.482113e+07, 1.700000e-05 },
|
|
{ 2.757903e+07, 1.750000e-05 }, };
|
|
FluidSystem::setGasFormationVolumeFactor(Bg);
|
|
FluidSystem::setSaturatedOilFormationVolumeFactor(Bo);
|
|
FluidSystem::setSaturatedOilGasDissolutionFactor(Rs);
|
|
FluidSystem::setSaturatedOilViscosity(muo);
|
|
FluidSystem::setGasViscosity(mug);
|
|
FluidSystem::setWaterViscosity(9.6e-4);
|
|
FluidSystem::setWaterCompressibility(1.450377e-10);
|
|
FluidSystem::setSurfaceDensities(/*oil=*/720.51,
|
|
/*water=*/1009.32,
|
|
/*gas=*/1.1245);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
FluidSystem::setReferenceVolumeFactor(phaseIdx, 1.0);
|
|
FluidSystem::initEnd();
|
|
|
|
pReservoir_ = 20e6;
|
|
layerBottom_ = 22.0;
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-12);
|
|
coarseK_ = this->toDimMatrix_(1e-11);
|
|
|
|
// porosities
|
|
finePorosity_ = 0.2;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fineMaterialParams_.setPcMinSat(phaseIdx, 0.0);
|
|
fineMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
|
|
|
|
coarseMaterialParams_.setPcMinSat(phaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
|
|
}
|
|
|
|
// wrap up the initialization of the material law's parameters
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
initFluidState_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
|
|
"The temperature [K] in the reservoir");
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, MaxDepth,
|
|
"The maximum depth [m] of the reservoir");
|
|
EWOMS_REGISTER_PARAM(TypeTag, std::string, SimulationName,
|
|
"The name of the simulation used for the output "
|
|
"files");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*
|
|
* For this problem, a layer with high permability is located
|
|
* above one with low permeability.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return EWOMS_GET_PARAM(TypeTag, std::string, SimulationName); }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*
|
|
* The black-oil model assumes constant temperature to define its
|
|
* parameters. Although temperature is thus not really used by the
|
|
* model, it gets written to the VTK output. Who nows, maybe we
|
|
* will need it one day?
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::boundary
|
|
*
|
|
* The reservoir problem uses constraints to approximate
|
|
* extraction and production wells, so all boundaries are no-flow.
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
// no flow on top and bottom
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volume terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::initial
|
|
*
|
|
* The reservoir problem uses a constant boundary condition for
|
|
* the whole domain.
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
|
|
{ values.assignNaive(initialFluidState_); }
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::constraints
|
|
*
|
|
* The reservoir problem places two water-injection wells on the
|
|
* lower parts of the left and right edges of the domains and on
|
|
* production well in the middle. The injection wells are fully
|
|
* water saturated with a higher pressure, the producer is fully
|
|
* oil saturated with a lower pressure than the remaining
|
|
* reservoir.
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints &constraints, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
|
Scalar x = pos[0] - this->boundingBoxMin()[0];
|
|
Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
if ((onLeftBoundary_(pos) || onRightBoundary_(pos)) && y < height / 2) {
|
|
// injectors
|
|
auto fs = initialFluidState_;
|
|
|
|
Scalar pInj = pReservoir_ * 1.5;
|
|
fs.setPressure(waterPhaseIdx, pInj);
|
|
fs.setPressure(oilPhaseIdx, pInj);
|
|
fs.setPressure(gasPhaseIdx, pInj);
|
|
fs.setSaturation(waterPhaseIdx, 1.0);
|
|
fs.setSaturation(oilPhaseIdx, 0.0);
|
|
fs.setSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// set the compositions to only water
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
// set the composition of the oil phase to the initial
|
|
// composition
|
|
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(oilPhaseIdx, compIdx,
|
|
initialFluidState_.moleFraction(oilPhaseIdx,
|
|
compIdx));
|
|
|
|
fs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
|
|
constraints.setAllConstraint();
|
|
constraints.assignNaive(fs);
|
|
}
|
|
else if (width / 2 - 1 < x && x < width / 2 + 1 && y > height / 2) {
|
|
// producer
|
|
auto fs = initialFluidState_;
|
|
|
|
Scalar pProd = pReservoir_ / 1.5;
|
|
fs.setPressure(waterPhaseIdx, pProd);
|
|
fs.setPressure(oilPhaseIdx, pProd);
|
|
fs.setPressure(gasPhaseIdx, pProd);
|
|
fs.setSaturation(waterPhaseIdx, 0.0);
|
|
fs.setSaturation(oilPhaseIdx, 1.0);
|
|
fs.setSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// set the compositions to the initial composition
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(phaseIdx, compIdx,
|
|
initialFluidState_.moleFraction(phaseIdx,
|
|
compIdx));
|
|
|
|
constraints.setAllConstraint();
|
|
constraints.assignNaive(fs);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0 everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
void initFluidState_()
|
|
{
|
|
auto &fs = initialFluidState_;
|
|
|
|
//////
|
|
// set temperatures
|
|
//////
|
|
fs.setTemperature(temperature_);
|
|
|
|
//////
|
|
// set saturations
|
|
//////
|
|
fs.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
|
|
fs.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
|
|
fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
|
|
|
|
//////
|
|
// set pressures
|
|
//////
|
|
Scalar pw = pReservoir_;
|
|
|
|
PhaseVector pC;
|
|
const auto &matParams = fineMaterialParams_;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
fs.setPressure(oilPhaseIdx, pw + (pC[oilPhaseIdx] - pC[waterPhaseIdx]));
|
|
fs.setPressure(waterPhaseIdx, pw + (pC[waterPhaseIdx] - pC[waterPhaseIdx]));
|
|
fs.setPressure(gasPhaseIdx, pw + (pC[gasPhaseIdx] - pC[waterPhaseIdx]));
|
|
|
|
// reset all mole fractions to 0
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
//////
|
|
// set composition of the gas and water phases
|
|
//////
|
|
fs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
fs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
|
|
//////
|
|
// set composition of the oil phase
|
|
//////
|
|
|
|
// retrieve the relevant black-oil parameters from the fluid
|
|
// system.
|
|
Scalar pSat = pReservoir_; // the saturation pressure of the oil
|
|
Scalar Bo = FluidSystem::oilFormationVolumeFactor(pSat);
|
|
Scalar Rs = FluidSystem::gasDissolutionFactor(pSat);
|
|
Scalar rhoo = FluidSystem::surfaceDensity(oilPhaseIdx) / Bo;
|
|
Scalar rhogref = FluidSystem::surfaceDensity(gasPhaseIdx);
|
|
|
|
// calculate composition of oil phase in terms of mass
|
|
// fractions.
|
|
Scalar XoG = Rs * rhogref / rhoo;
|
|
|
|
// convert mass to mole fractions
|
|
Scalar MG = FluidSystem::molarMass(gasCompIdx);
|
|
Scalar MO = FluidSystem::molarMass(oilCompIdx);
|
|
|
|
Scalar xoG = XoG * MO / ((MO - MG) * XoG + MG);
|
|
Scalar xoO = 1 - xoG;
|
|
|
|
// finally set the oil-phase composition
|
|
fs.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
|
|
fs.setMoleFraction(oilPhaseIdx, oilCompIdx, xoO);
|
|
}
|
|
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition &pos) const
|
|
{ return onRightBoundary_(pos) && (5 < pos[1]) && (pos[1] < 15); }
|
|
|
|
bool isFineMaterial_(const GlobalPosition &pos) const
|
|
{ return pos[dim - 1] > layerBottom_; }
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
Scalar layerBottom_;
|
|
Scalar pReservoir_;
|
|
|
|
Scalar finePorosity_;
|
|
Scalar coarsePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
BlackOilFluidState initialFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar maxDepth_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|