opm-simulators/opm/simulators/linalg/bda/WellContributions.cu
2020-11-18 09:14:31 -03:00

232 lines
8.2 KiB
Plaintext

/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h> // CMake
#include <cstdlib>
#include <cstring>
#include "opm/simulators/linalg/bda/cuda_header.hpp"
#include <cuda_runtime.h>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include "opm/simulators/linalg/bda/WellContributions.hpp"
namespace Opm
{
// apply WellContributions using y -= C^T * (D^-1 * (B * x))
__global__ void apply_well_contributions(
const double * __restrict__ Cnnzs,
const double * __restrict__ Dnnzs,
const double * __restrict__ Bnnzs,
const int * __restrict__ Ccols,
const int * __restrict__ Bcols,
const double * __restrict__ x,
double * __restrict__ y,
const int dim,
const int dim_wells,
const unsigned int * __restrict__ val_pointers
)
{
const int idx_b = blockIdx.x;
const int idx_t = threadIdx.x;
const unsigned int val_size = val_pointers[idx_b + 1] - val_pointers[idx_b];
const int vals_per_block = dim * dim_wells; // 12
const int num_active_threads = (32 / vals_per_block) * vals_per_block; // 24
const int num_blocks_per_warp = 32 / vals_per_block; // 2
const int lane = idx_t % 32;
const int c = lane % dim; // col in block
const int r = (lane / dim) % dim_wells; // row in block
extern __shared__ double smem[];
double * __restrict__ z1 = smem;
double * __restrict__ z2 = z1 + dim_wells;
if (idx_t < dim_wells) {
z1[idx_t] = 0.0;
}
__syncthreads();
// z1 = B * x
if (idx_t < num_active_threads) {
// multiply all blocks with x
double temp = 0.0;
int b = idx_t / vals_per_block + val_pointers[idx_b]; // block id, val_size indicates number of blocks
while (b < val_size + val_pointers[idx_b]) {
int colIdx = Bcols[b];
temp += Bnnzs[b * dim * dim_wells + r * dim + c] * x[colIdx * dim + c];
b += num_blocks_per_warp;
}
// merge all blocks into 1 dim*dim_wells block
// since NORNE has only 2 parallel blocks, do not use a loop
temp += __shfl_down_sync(0x00ffffff, temp, dim * dim_wells);
b = idx_t / vals_per_block + val_pointers[idx_b];
// merge all (dim) columns of 1 block, results in a single 1*dim_wells vector, which is used to multiply with invD
if (idx_t < vals_per_block) {
// should be a loop as well, now only works for dim == 3
if (c == 0 || c == 2) {temp += __shfl_down_sync(0x00000B6D, temp, 2);} // add col 2 to col 0
if (c == 0 || c == 1) {temp += __shfl_down_sync(0x000006DB, temp, 1);} // add col 1 to col 0
}
// write 1*dim_wells vector to gmem, could be replaced with shfl broadcast to remove z1 altogether
if (c == 0 && idx_t < vals_per_block) {
z1[r] = temp;
}
}
__syncthreads();
// z2 = D^-1 * B * x = D^-1 * z1
if (idx_t < dim_wells) {
double temp = 0.0;
for (int c = 0; c < dim_wells; ++c) {
temp += Dnnzs[idx_b * dim_wells * dim_wells + idx_t * dim_wells + c] * z1[c];
}
z2[idx_t] = temp;
}
__syncthreads();
// y -= C^T * D^-1 * B * x
// use dim * val_size threads, each block is assigned 'dim' threads
if (idx_t < dim * val_size) {
double temp = 0.0;
int b = idx_t / dim + val_pointers[idx_b];
int cc = idx_t % dim;
int colIdx = Ccols[b];
for (unsigned int c = 0; c < dim_wells; ++c) {
temp += Cnnzs[b * dim * dim_wells + c * dim + cc] * z2[c];
}
y[colIdx * dim + cc] -= temp;
}
}
void WellContributions::allocStandardWells()
{
cudaMalloc((void**)&d_Cnnzs, sizeof(double) * num_blocks * dim * dim_wells);
cudaMalloc((void**)&d_Dnnzs, sizeof(double) * num_std_wells * dim_wells * dim_wells);
cudaMalloc((void**)&d_Bnnzs, sizeof(double) * num_blocks * dim * dim_wells);
cudaMalloc((void**)&d_Ccols, sizeof(int) * num_blocks);
cudaMalloc((void**)&d_Bcols, sizeof(int) * num_blocks);
cudaMalloc((void**)&d_val_pointers, sizeof(unsigned int) * (num_std_wells + 1));
cudaCheckLastError("apply_gpu malloc failed");
}
void WellContributions::freeCudaMemory() {
// delete data for StandardWell
if (num_std_wells > 0) {
cudaFree(d_Cnnzs);
cudaFree(d_Dnnzs);
cudaFree(d_Bnnzs);
cudaFree(d_Ccols);
cudaFree(d_Bcols);
cudaFree(d_val_pointers);
}
if (num_ms_wells > 0 && h_x) {
cudaFreeHost(h_x);
cudaFreeHost(h_y);
h_x = h_y = nullptr; // Mark as free for constructor
}
}
// Apply the WellContributions, similar to StandardWell::apply()
// y -= (C^T *(D^-1*( B*x)))
void WellContributions::apply(double *d_x, double *d_y)
{
// apply MultisegmentWells
// make sure the stream is empty if timing measurements are done
cudaStreamSynchronize(stream);
if (num_ms_wells > 0) {
// allocate pinned memory on host if not yet done
if (h_x == nullptr) {
cudaMallocHost(&h_x, sizeof(double) * N);
cudaMallocHost(&h_y, sizeof(double) * N);
}
// copy vectors x and y from GPU to CPU
cudaMemcpyAsync(h_x, d_x, sizeof(double) * N, cudaMemcpyDeviceToHost, stream);
cudaMemcpyAsync(h_y, d_y, sizeof(double) * N, cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
// actually apply MultisegmentWells
for (MultisegmentWellContribution *well : multisegments) {
well->apply(h_x, h_y);
}
// copy vector y from CPU to GPU
cudaMemcpyAsync(d_y, h_y, sizeof(double) * N, cudaMemcpyHostToDevice, stream);
cudaStreamSynchronize(stream);
}
// apply StandardWells
if (num_std_wells > 0) {
int smem_size = 2 * sizeof(double) * dim_wells;
apply_well_contributions <<< num_std_wells, 32, smem_size, stream>>>(d_Cnnzs, d_Dnnzs, d_Bnnzs, d_Ccols, d_Bcols, d_x, d_y, dim, dim_wells, d_val_pointers);
}
}
void WellContributions::addMatrixGpu(MatrixType type, int *colIndices, double *values, unsigned int val_size)
{
switch (type) {
case MatrixType::C:
cudaMemcpy(d_Cnnzs + num_blocks_so_far * dim * dim_wells, values, sizeof(double) * val_size * dim * dim_wells, cudaMemcpyHostToDevice);
cudaMemcpy(d_Ccols + num_blocks_so_far, colIndices, sizeof(int) * val_size, cudaMemcpyHostToDevice);
break;
case MatrixType::D:
cudaMemcpy(d_Dnnzs + num_std_wells_so_far * dim_wells * dim_wells, values, sizeof(double) * dim_wells * dim_wells, cudaMemcpyHostToDevice);
break;
case MatrixType::B:
cudaMemcpy(d_Bnnzs + num_blocks_so_far * dim * dim_wells, values, sizeof(double) * val_size * dim * dim_wells, cudaMemcpyHostToDevice);
cudaMemcpy(d_Bcols + num_blocks_so_far, colIndices, sizeof(int) * val_size, cudaMemcpyHostToDevice);
val_pointers[num_std_wells_so_far] = num_blocks_so_far;
if (num_std_wells_so_far == num_std_wells - 1) {
val_pointers[num_std_wells] = num_blocks;
cudaMemcpy(d_val_pointers, val_pointers, sizeof(unsigned int) * (num_std_wells + 1), cudaMemcpyHostToDevice);
}
break;
default:
OPM_THROW(std::logic_error, "Error unsupported matrix ID for WellContributions::addMatrix()");
}
cudaCheckLastError("WellContributions::addMatrix() failed");
}
void WellContributions::setCudaStream(cudaStream_t stream_)
{
this->stream = stream_;
for (MultisegmentWellContribution *well : multisegments) {
well->setCudaStream(stream_);
}
}
} //namespace Opm