opm-simulators/opm/models/blackoil/blackoilbrinemodules.hh
Arne Morten Kvarving a51e13c244 blackoilbrineparams: introduce translation unit
move code for loading parameters from eclipse state into it
2024-09-04 09:02:17 +02:00

492 lines
18 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model by brine.
*/
#ifndef EWOMS_BLACK_OIL_BRINE_MODULE_HH
#define EWOMS_BLACK_OIL_BRINE_MODULE_HH
#include <opm/models/blackoil/blackoilbrineparams.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/utils/basicproperties.hh>
#include <dune/common/fvector.hh>
#include <string>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model by brine.
*/
template <class TypeTag, bool enableBrineV = getPropValue<TypeTag, Properties::EnableBrine>()>
class BlackOilBrineModule
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Toolbox = MathToolbox<Evaluation>;
using TabulatedFunction = typename BlackOilBrineParams<Scalar>::TabulatedFunction;
static constexpr unsigned saltConcentrationIdx = Indices::saltConcentrationIdx;
static constexpr unsigned contiBrineEqIdx = Indices::contiBrineEqIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr bool gasEnabled = Indices::gasEnabled;
static constexpr bool oilEnabled = Indices::oilEnabled;
static constexpr unsigned enableBrine = enableBrineV;
static constexpr unsigned enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>();
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr unsigned numPhases = FluidSystem::numPhases;
public:
//! \brief Set parameters.
static void setParams(BlackOilBrineParams<Scalar>&& params)
{
params_ = params;
}
/*!
* \brief Register all run-time parameters for the black-oil brine module.
*/
static void registerParameters()
{
}
static bool primaryVarApplies(unsigned pvIdx)
{
if constexpr (enableBrine)
return pvIdx == saltConcentrationIdx;
else
return false;
}
/*!
* \brief Assign the brine specific primary variables to a PrimaryVariables object
*/
template <class FluidState>
static void assignPrimaryVars(PrimaryVariables& priVars,
const FluidState& fluidState)
{
if constexpr (enableBrine)
priVars[saltConcentrationIdx] = fluidState.saltConcentration();
}
static std::string primaryVarName([[maybe_unused]] unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
return "saltConcentration";
}
static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if constexpr (enableBrine)
return eqIdx == contiBrineEqIdx;
else
return false;
}
static std::string eqName([[maybe_unused]] unsigned eqIdx)
{
assert(eqApplies(eqIdx));
return "conti^brine";
}
static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
// must be called after water storage is computed
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if constexpr (enableBrine) {
const auto& fs = intQuants.fluidState();
LhsEval surfaceVolumeWater =
Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
// avoid singular matrix if no water is present.
surfaceVolumeWater = max(surfaceVolumeWater, 1e-10);
// Brine in water phase
const LhsEval massBrine = surfaceVolumeWater
* Toolbox::template decay<LhsEval>(fs.saltConcentration());
if (enableSaltPrecipitation){
double saltDensity = intQuants.saltDensity(); // Solid salt density kg/m3
const LhsEval solidSalt =
Toolbox::template decay<LhsEval>(intQuants.porosity())
/ (1.0 - Toolbox::template decay<LhsEval>(intQuants.saltSaturation()) + 1.e-8)
* saltDensity
* Toolbox::template decay<LhsEval>(intQuants.saltSaturation());
storage[contiBrineEqIdx] += massBrine + solidSalt;
}
else { storage[contiBrineEqIdx] += massBrine;}
}
}
static void computeFlux([[maybe_unused]] RateVector& flux,
[[maybe_unused]] const ElementContext& elemCtx,
[[maybe_unused]] unsigned scvfIdx,
[[maybe_unused]] unsigned timeIdx)
{
if constexpr (enableBrine) {
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::waterPhaseIdx);
const unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiBrineEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*up.fluidState().invB(waterPhaseIdx)
*up.fluidState().saltConcentration();
}
else {
flux[contiBrineEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*decay<Scalar>(up.fluidState().invB(waterPhaseIdx))
*decay<Scalar>(up.fluidState().saltConcentration());
}
}
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables&,
const EqVector&)
{
// do not consider consider the change of Brine primary variables for
// convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
template <class DofEntity>
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if constexpr (enableBrine) {
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[saltConcentrationIdx];
}
}
template <class DofEntity>
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if constexpr (enableBrine) {
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[saltConcentrationIdx];
// set the primary variables for the beginning of the current time step.
priVars1[saltConcentrationIdx] = priVars0[saltConcentrationIdx];
}
}
static const Scalar& referencePressure(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.referencePressure_[pvtnumRegionIdx];
}
static const TabulatedFunction& bdensityTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.bdensityTable_[pvtnumRegionIdx];
}
static const TabulatedFunction& pcfactTable(unsigned satnumRegionIdx)
{
return params_.pcfactTable_[satnumRegionIdx];
}
static const TabulatedFunction& permfactTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.permfactTable_[pvtnumRegionIdx];
}
static const TabulatedFunction& permfactTable(unsigned pvtnumRegionIdx)
{
return params_.permfactTable_[pvtnumRegionIdx];
}
static const Scalar saltsolTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.saltsolTable_[pvtnumRegionIdx];
}
static const Scalar saltdenTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.saltdenTable_[pvtnumRegionIdx];
}
static bool hasBDensityTables()
{
return !params_.bdensityTable_.empty();
}
static bool hasSaltsolTables()
{
return !params_.saltsolTable_.empty();
}
static bool hasPcfactTables()
{
if constexpr (enableSaltPrecipitation)
return !params_.pcfactTable_.empty();
else
return false;
}
static Scalar saltSol(unsigned regionIdx) {
return params_.saltsolTable_[regionIdx];
}
private:
static BlackOilBrineParams<Scalar> params_;
};
template <class TypeTag, bool enableBrineV>
BlackOilBrineParams<typename BlackOilBrineModule<TypeTag, enableBrineV>::Scalar>
BlackOilBrineModule<TypeTag, enableBrineV>::params_;
/*!
* \ingroup BlackOil
* \class Ewoms::BlackOilBrineIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* brine extension of the black-oil model.
*/
template <class TypeTag, bool enableBrineV = getPropValue<TypeTag, Properties::EnableBrine>()>
class BlackOilBrineIntensiveQuantities
{
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using BrineModule = BlackOilBrineModule<TypeTag>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
static constexpr int saltConcentrationIdx = Indices::saltConcentrationIdx;
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr int oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr unsigned enableBrine = enableBrineV;
static constexpr unsigned enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>();
static constexpr int contiBrineEqIdx = Indices::contiBrineEqIdx;
public:
/*!
* \brief Update the intensive properties needed to handle brine from the
* primary variables
*
*/
void updateSaltConcentration_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
auto& fs = asImp_().fluidState_;
if constexpr (enableSaltPrecipitation) {
const auto& saltsolTable = BrineModule::saltsolTable(elemCtx, dofIdx, timeIdx);
saltSolubility_ = saltsolTable;
const auto& saltdenTable = BrineModule::saltdenTable(elemCtx, dofIdx, timeIdx);
saltDensity_ = saltdenTable;
if (priVars.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
saltSaturation_ = priVars.makeEvaluation(saltConcentrationIdx, timeIdx);
fs.setSaltConcentration(saltSolubility_);
}
else {
saltConcentration_ = priVars.makeEvaluation(saltConcentrationIdx, timeIdx);
fs.setSaltConcentration(saltConcentration_);
saltSaturation_ = 0.0;
}
fs.setSaltSaturation(saltSaturation_);
}
else {
saltConcentration_ = priVars.makeEvaluation(saltConcentrationIdx, timeIdx);
fs.setSaltConcentration(saltConcentration_);
}
}
void saltPropertiesUpdate_([[maybe_unused]] const ElementContext& elemCtx,
[[maybe_unused]] unsigned dofIdx,
[[maybe_unused]] unsigned timeIdx)
{
if constexpr (enableSaltPrecipitation) {
const Evaluation porosityFactor = min(1.0 - saltSaturation(), 1.0); //phi/phi_0
const auto& permfactTable = BrineModule::permfactTable(elemCtx, dofIdx, timeIdx);
permFactor_ = permfactTable.eval(porosityFactor);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
asImp_().mobility_[phaseIdx] *= permFactor_;
}
}
}
const Evaluation& saltConcentration() const
{ return saltConcentration_; }
const Evaluation& brineRefDensity() const
{ return refDensity_; }
const Evaluation& saltSaturation() const
{ return saltSaturation_; }
Scalar saltSolubility() const
{ return saltSolubility_; }
Scalar saltDensity() const
{ return saltDensity_; }
const Evaluation& permFactor() const
{ return permFactor_; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation saltConcentration_;
Evaluation refDensity_;
Evaluation saltSaturation_;
Evaluation permFactor_;
Scalar saltSolubility_;
Scalar saltDensity_;
};
template <class TypeTag>
class BlackOilBrineIntensiveQuantities<TypeTag, false>
{
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
void updateSaltConcentration_(const ElementContext&,
unsigned,
unsigned)
{ }
void saltPropertiesUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
const Evaluation& saltConcentration() const
{ throw std::runtime_error("saltConcentration() called but brine are disabled"); }
const Evaluation& brineRefDensity() const
{ throw std::runtime_error("brineRefDensity() called but brine are disabled"); }
const Evaluation& saltSaturation() const
{ throw std::logic_error("saltSaturation() called but salt precipitation is disabled"); }
const Scalar saltSolubility() const
{ throw std::logic_error("saltSolubility() called but salt precipitation is disabled"); }
const Scalar saltDensity() const
{ throw std::logic_error("saltDensity() called but salt precipitation is disabled"); }
const Evaluation& permFactor() const
{ throw std::logic_error("permFactor() called but salt precipitation is disabled"); }
};
} // namespace Ewoms
#endif