mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-12 09:21:56 -06:00
200 lines
7.2 KiB
C++
200 lines
7.2 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::ImmiscibleLocalResidual
|
|
*/
|
|
#ifndef EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH
|
|
#define EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH
|
|
|
|
#include "immiscibleproperties.hh"
|
|
|
|
#include <opm/models/common/energymodule.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup ImmiscibleModel
|
|
*
|
|
* \brief Calculates the local residual of the immiscible multi-phase
|
|
* model.
|
|
*/
|
|
template <class TypeTag>
|
|
class ImmiscibleLocalResidual : public GetPropType<TypeTag, Properties::DiscLocalResidual>
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::LocalResidual>;
|
|
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
|
|
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Adds the amount all conservation quantities (e.g. phase
|
|
* mass) within a single fluid phase
|
|
*
|
|
* \copydetails Doxygen::storageParam
|
|
* \copydetails Doxygen::dofCtxParams
|
|
* \copydetails Doxygen::phaseIdxParam
|
|
*/
|
|
template <class LhsEval>
|
|
void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx,
|
|
unsigned phaseIdx) const
|
|
{
|
|
// retrieve the intensive quantities for the SCV at the specified
|
|
// point in time
|
|
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
storage[conti0EqIdx + phaseIdx] =
|
|
Toolbox::template decay<LhsEval>(intQuants.porosity())
|
|
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
|
|
* Toolbox::template decay<LhsEval>(fs.density(phaseIdx));
|
|
|
|
EnergyModule::addPhaseStorage(storage, intQuants, phaseIdx);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeStorage
|
|
*/
|
|
template <class LhsEval>
|
|
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
storage = 0.0;
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
asImp_().addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx);
|
|
|
|
EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx));
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeFlux
|
|
*/
|
|
void computeFlux(RateVector& flux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
flux = 0.0;
|
|
asImp_().addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
asImp_().addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Add the advective mass flux at a given flux integration point
|
|
*
|
|
* \copydetails computeFlux
|
|
*/
|
|
void addAdvectiveFlux(RateVector& flux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
|
|
////////
|
|
// advective fluxes of all components in all phases
|
|
////////
|
|
unsigned focusDofIdx = elemCtx.focusDofIndex();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// data attached to upstream DOF of the current phase.
|
|
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
|
|
|
|
const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
|
|
|
|
// add advective flux of current component in current phase.
|
|
const Evaluation& rho = up.fluidState().density(phaseIdx);
|
|
if (focusDofIdx == upIdx)
|
|
flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*rho;
|
|
else
|
|
flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*Toolbox::value(rho);
|
|
}
|
|
|
|
EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Adds the diffusive flux at a given flux integration point.
|
|
*
|
|
* For the immiscible model, this is a no-op for mass fluxes. For energy it adds the
|
|
* contribution of thermal conduction to the enthalpy flux.
|
|
*
|
|
* \copydetails computeFlux
|
|
*/
|
|
void addDiffusiveFlux(RateVector& flux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
// no diffusive mass fluxes for the immiscible model
|
|
|
|
// thermal conduction
|
|
EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeSource
|
|
*
|
|
* By default, this method only asks the problem to specify a
|
|
* source term.
|
|
*/
|
|
void computeSource(RateVector& source,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::Valgrind::SetUndefined(source);
|
|
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
|
|
Opm::Valgrind::CheckDefined(source);
|
|
}
|
|
|
|
private:
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation *>(this); }
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|