opm-simulators/opm/models/ncp/ncpnewtonmethod.hh

220 lines
8.4 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::NcpNewtonMethod
*/
#ifndef EWOMS_NCP_NEWTON_METHOD_HH
#define EWOMS_NCP_NEWTON_METHOD_HH
#include "ncpproperties.hh"
#include <opm/common/Exceptions.hpp>
#include <opm/models/nonlinear/newtonmethod.hh>
#include <algorithm>
namespace Opm::Properties {
template <class TypeTag, class MyTypeTag>
struct DiscNewtonMethod;
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup NcpModel
*
* \brief A Newton solver specific to the NCP model.
*/
template <class TypeTag>
class NcpNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMethod>
{
using ParentType = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { fugacity0Idx = Indices::fugacity0Idx };
enum { saturation0Idx = Indices::saturation0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { ncp0EqIdx = Indices::ncp0EqIdx };
public:
/*!
* \copydoc FvBaseNewtonMethod::FvBaseNewtonMethod(Problem& )
*/
NcpNewtonMethod(Simulator& simulator) : ParentType(simulator)
{}
protected:
friend ParentType;
friend NewtonMethod<TypeTag>;
void preSolve_(const SolutionVector&,
const GlobalEqVector& currentResidual)
{
const auto& constraintsMap = this->model().linearizer().constraintsMap();
this->lastError_ = this->error_;
// calculate the error as the maximum weighted tolerance of
// the solution's residual
this->error_ = 0;
for (unsigned dofIdx = 0; dofIdx < currentResidual.size(); ++dofIdx) {
// do not consider auxiliary DOFs for the error
if (dofIdx >= this->model().numGridDof() || this->model().dofTotalVolume(dofIdx) <= 0.0)
continue;
// also do not consider DOFs which are constraint
if (this->enableConstraints_()) {
if (constraintsMap.count(dofIdx) > 0)
continue;
}
const auto& r = currentResidual[dofIdx];
for (unsigned eqIdx = 0; eqIdx < r.size(); ++eqIdx) {
if (ncp0EqIdx <= eqIdx && eqIdx < Indices::ncp0EqIdx + numPhases)
continue;
this->error_ =
std::max(std::abs(r[eqIdx]*this->model().eqWeight(dofIdx, eqIdx)),
this->error_);
}
}
// take the other processes into account
this->error_ = this->comm_.max(this->error_);
// make sure that the error never grows beyond the maximum
// allowed one
if (this->error_ > Parameters::Get<Parameters::NewtonMaxError<Scalar>>())
throw Opm::NumericalProblem("Newton: Error "+std::to_string(double(this->error_))+
+ " is larger than maximum allowed error of "
+ std::to_string(Parameters::Get<Parameters::NewtonMaxError<Scalar>>()));
}
/*!
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
*/
void updatePrimaryVariables_(unsigned globalDofIdx,
PrimaryVariables& nextValue,
const PrimaryVariables& currentValue,
const EqVector& update,
const EqVector&)
{
// normal Newton-Raphson update
nextValue = currentValue;
nextValue -= update;
////
// put crash barriers along the update path
////
// saturations: limit the change of any saturation to at most 20%
Scalar sumSatDelta = 0.0;
Scalar maxSatDelta = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
maxSatDelta = std::max(std::abs(update[saturation0Idx + phaseIdx]),
maxSatDelta);
sumSatDelta += update[saturation0Idx + phaseIdx];
}
maxSatDelta = std::max(std::abs(- sumSatDelta), maxSatDelta);
if (maxSatDelta > 0.2) {
Scalar alpha = 0.2/maxSatDelta;
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
nextValue[saturation0Idx + phaseIdx] =
currentValue[saturation0Idx + phaseIdx]
- alpha*update[saturation0Idx + phaseIdx];
}
}
// limit pressure reference change to 20% of the total value per iteration
clampValue_(nextValue[pressure0Idx],
currentValue[pressure0Idx]*0.8,
currentValue[pressure0Idx]*1.2);
// fugacities
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar& val = nextValue[fugacity0Idx + compIdx];
Scalar oldVal = currentValue[fugacity0Idx + compIdx];
// get the minimum activity coefficient for the component (i.e., the activity
// coefficient of the phase for which the component has the highest affinity)
Scalar minPhi = this->problem().model().minActivityCoeff(globalDofIdx, compIdx);
// Make sure that the activity coefficient does not get too small.
minPhi = std::max(0.001*currentValue[pressure0Idx], minPhi);
// allow the mole fraction of the component to change at most 70% in any
// phase (assuming composition independent fugacity coefficients).
Scalar maxDelta = 0.7 * minPhi;
clampValue_(val, oldVal - maxDelta, oldVal + maxDelta);
// make sure that fugacities do not become negative
val = std::max(val, 0.0);
}
// do not become grossly unphysical in a single iteration for the first few
// iterations of a time step
if (this->numIterations_ < 3) {
// fugacities
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar& val = nextValue[fugacity0Idx + compIdx];
Scalar oldVal = currentValue[fugacity0Idx + compIdx];
Scalar minPhi = this->problem().model().minActivityCoeff(globalDofIdx, compIdx);
if (oldVal < 1.0*minPhi && val > 1.0*minPhi)
val = 1.0*minPhi;
else if (oldVal > 0.0 && val < 0.0)
val = 0.0;
}
// saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
Scalar& val = nextValue[saturation0Idx + phaseIdx];
Scalar oldVal = currentValue[saturation0Idx + phaseIdx];
if (oldVal < 1.0 && val > 1.0)
val = 1.0;
else if (oldVal > 0.0 && val < 0.0)
val = 0.0;
}
}
}
private:
void clampValue_(Scalar& val, Scalar minVal, Scalar maxVal) const
{ val = std::max(minVal, std::min(val, maxVal)); }
};
} // namespace Opm
#endif