opm-simulators/examples/polymer_reorder.cpp
2012-02-02 15:41:46 +01:00

852 lines
24 KiB
C++

/*===========================================================================
//
// File: spu_2p.cpp
//
// Created: 2011-10-05 10:29:01+0200
//
// Authors: Ingeborg S. Ligaarden <Ingeborg.Ligaarden@sintef.no>
// Jostein R. Natvig <Jostein.R.Natvig@sintef.no>
// Halvor M. Nilsen <HalvorMoll.Nilsen@sintef.no>
// Atgeirr F. Rasmussen <atgeirr@sintef.no>
// Bård Skaflestad <Bard.Skaflestad@sintef.no>
//
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/linalg/sparse_sys.h>
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/core/utility/cart_grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/cpgpreprocess/cgridinterface.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/SimpleFluid2p.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/transport/reorder/twophasetransport.hpp>
#include <boost/filesystem/convenience.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <tr1/array>
#include <functional>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <iterator>
#include <vector>
namespace Opm
{
/// Concrete grid class constructing a
/// corner point grid from a deck,
/// or a cartesian grid.
class Grid
{
public:
Grid(const Opm::EclipseGridParser& deck)
{
// Extract data from deck.
const std::vector<double>& zcorn = deck.getFloatingPointValue("ZCORN");
const std::vector<double>& coord = deck.getFloatingPointValue("COORD");
const std::vector<int>& actnum = deck.getIntegerValue("ACTNUM");
std::vector<int> dims;
if (deck.hasField("DIMENS")) {
dims = deck.getIntegerValue("DIMENS");
} else if (deck.hasField("SPECGRID")) {
dims = deck.getSPECGRID().dimensions;
} else {
THROW("Deck must have either DIMENS or SPECGRID.");
}
// Collect in input struct for preprocessing.
struct grdecl grdecl;
grdecl.zcorn = &zcorn[0];
grdecl.coord = &coord[0];
grdecl.actnum = &actnum[0];
grdecl.dims[0] = dims[0];
grdecl.dims[1] = dims[1];
grdecl.dims[2] = dims[2];
// Process and compute.
ug_ = preprocess(&grdecl, 0.0);
compute_geometry(ug_);
}
Grid(int nx, int ny)
{
ug_ = create_cart_grid_2d(nx, ny);
}
Grid(int nx, int ny, int nz)
{
ug_ = create_cart_grid_3d(nx, ny, nz);
}
~Grid()
{
free_grid(ug_);
}
virtual const UnstructuredGrid* c_grid() const
{
return ug_;
}
private:
// Disable copying and assignment.
Grid(const Grid& other);
Grid& operator=(const Grid& other);
struct UnstructuredGrid* ug_;
};
} // namespace Opm
class ReservoirState {
public:
ReservoirState(const UnstructuredGrid* g, const int num_phases = 2)
: press_ (g->number_of_cells, 0.0),
fpress_(g->number_of_faces, 0.0),
flux_ (g->number_of_faces, 0.0),
sat_ (num_phases * g->number_of_cells, 0.0)
{
for (int cell = 0; cell < g->number_of_cells; ++cell) {
sat_[num_phases*cell + num_phases - 1] = 1.0;
}
}
int numPhases() const { return sat_.size()/press_.size(); }
::std::vector<double>& pressure () { return press_ ; }
::std::vector<double>& facepressure() { return fpress_; }
::std::vector<double>& faceflux () { return flux_ ; }
::std::vector<double>& saturation () { return sat_ ; }
const ::std::vector<double>& pressure () const { return press_ ; }
const ::std::vector<double>& facepressure() const { return fpress_; }
const ::std::vector<double>& faceflux () const { return flux_ ; }
const ::std::vector<double>& saturation () const { return sat_ ; }
private:
::std::vector<double> press_ ;
::std::vector<double> fpress_;
::std::vector<double> flux_ ;
::std::vector<double> sat_ ;
};
class PressureSolver {
public:
PressureSolver(const UnstructuredGrid* g,
const Opm::IncompPropertiesInterface& props)
: htrans_(g->cell_facepos[ g->number_of_cells ]),
trans_ (g->number_of_faces),
gpress_(g->cell_facepos[ g->number_of_cells ])
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(g);
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
h_ = ifs_tpfa_construct(gg);
}
~PressureSolver()
{
ifs_tpfa_destroy(h_);
}
template <class State>
void
solve(const UnstructuredGrid* g ,
const ::std::vector<double>& totmob,
const ::std::vector<double>& src ,
State& state )
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(g);
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
// No gravity
::std::fill(gpress_.begin(), gpress_.end(), double(0.0));
ifs_tpfa_assemble(gg, &trans_[0], &src[0], &gpress_[0], h_);
using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
CSRMatrixUmfpackSolver linsolve;
linsolve.solve(h_->A, h_->b, h_->x);
ifs_tpfa_press_flux(gg, &trans_[0], h_,
&state.pressure()[0],
&state.faceflux()[0]);
}
private:
::std::vector<double> htrans_;
::std::vector<double> trans_ ;
::std::vector<double> gpress_;
struct ifs_tpfa_data* h_;
};
static void
compute_porevolume(const UnstructuredGrid* g,
const Opm::IncompPropertiesInterface& props,
std::vector<double>& porevol)
{
int num_cells = g->number_of_cells;
porevol.resize(num_cells);
const double* poro = props.porosity();
::std::transform(poro, poro + num_cells,
g->cell_volumes,
porevol.begin(),
::std::multiplies<double>());
}
static void
compute_totmob(const Opm::IncompPropertiesInterface& props,
const std::vector<double>& s,
std::vector<double>& totmob)
{
int num_cells = props.numCells();
int num_phases = props.numPhases();
totmob.resize(num_cells);
ASSERT(int(s.size()) == num_cells*num_phases);
std::vector<int> cells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
cells[cell] = cell;
}
std::vector<double> kr(num_cells*num_phases);
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
const double* mu = props.viscosity();
for (int cell = 0; cell < num_cells; ++cell) {
totmob[cell] = 0;
for (int phase = 0; phase < num_phases; ++phase) {
totmob[cell] += kr[2*cell + phase]/mu[phase];
}
}
}
template <class State>
void outputState(const UnstructuredGrid* grid,
const State& state,
const int step,
const std::string& output_dir)
{
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
writeVtkDataGeneralGrid(grid, state, vtkfile);
}
template <class State>
void writeVtkDataAllCartesian(const std::tr1::array<int, 3>& dims,
const std::tr1::array<double, 3>& cell_size,
const State& state,
std::ostream& vtk_file)
{
// Dimension is hardcoded in the prototype and the next two lines,
// but the rest is flexible (allows dimension == 2 or 3).
int dimension = 3;
int num_cells = dims[0]*dims[1]*dims[2];
ASSERT(dimension == 2 || dimension == 3);
ASSERT(num_cells = dims[0]*dims[1]* (dimension == 2 ? 1 : dims[2]));
vtk_file << "# vtk DataFile Version 2.0\n";
vtk_file << "Structured Grid\n \n";
vtk_file << "ASCII \n";
vtk_file << "DATASET STRUCTURED_POINTS\n";
vtk_file << "DIMENSIONS "
<< dims[0] + 1 << " "
<< dims[1] + 1 << " ";
if (dimension == 3) {
vtk_file << dims[2] + 1;
} else {
vtk_file << 1;
}
vtk_file << "\n";
vtk_file << "ORIGIN " << 0.0 << " " << 0.0 << " " << 0.0 << "\n";
vtk_file << "SPACING " << cell_size[0] << " " << cell_size[1];
if (dimension == 3) {
vtk_file << " " << cell_size[2];
} else {
vtk_file << " " << 0.0;
}
vtk_file << "\n";
vtk_file << "CELL_DATA " << num_cells << '\n';
vtk_file << "SCALARS pressure float" << '\n';
vtk_file << "LOOKUP_TABLE pressure_table " << '\n';
for (int i = 0; i < num_cells; ++i) {
vtk_file << state.pressure()[i] << '\n';
}
ASSERT(state.numPhases() == 2);
vtk_file << "SCALARS saturation float" << '\n';
vtk_file << "LOOKUP_TABLE saturation_table " << '\n';
for (int i = 0; i < num_cells; ++i) {
double s = state.saturation()[2*i];
if (s > 1e-10) {
vtk_file << s << '\n';
} else {
vtk_file << 0.0 << '\n';
}
}
}
typedef std::map<std::string, std::string> PMap;
struct Tag
{
Tag(const std::string& tag, const PMap& props, std::ostream& os)
: name_(tag), os_(os)
{
indent(os);
os << "<" << tag;
for (PMap::const_iterator it = props.begin(); it != props.end(); ++it) {
os << " " << it->first << "=\"" << it->second << "\"";
}
os << ">\n";
++indent_;
}
Tag(const std::string& tag, std::ostream& os)
: name_(tag), os_(os)
{
indent(os);
os << "<" << tag << ">\n";
++indent_;
}
~Tag()
{
--indent_;
indent(os_);
os_ << "</" << name_ << ">\n";
}
static void indent(std::ostream& os)
{
for (int i = 0; i < indent_; ++i) {
os << " ";
}
}
private:
static int indent_;
std::string name_;
std::ostream& os_;
};
int Tag::indent_ = 0;
template <class State>
void writeVtkDataGeneralGrid(const UnstructuredGrid* grid,
const State& state,
std::ostream& os)
{
if (grid->dimensions != 3) {
THROW("Vtk output for 3d grids only");
}
os.precision(12);
os << "<?xml version=\"1.0\"?>\n";
PMap pm;
pm["type"] = "UnstructuredGrid";
Tag vtkfiletag("VTKFile", pm, os);
Tag ugtag("UnstructuredGrid", os);
int num_pts = grid->number_of_nodes;
int num_cells = grid->number_of_cells;
pm.clear();
pm["NumberOfPoints"] = boost::lexical_cast<std::string>(num_pts);
pm["NumberOfCells"] = boost::lexical_cast<std::string>(num_cells);
Tag piecetag("Piece", pm, os);
{
Tag pointstag("Points", os);
pm.clear();
pm["type"] = "Float64";
pm["Name"] = "Coordinates";
pm["NumberOfComponents"] = "3";
pm["format"] = "ascii";
Tag datag("DataArray", pm, os);
for (int i = 0; i < num_pts; ++i) {
Tag::indent(os);
os << grid->node_coordinates[3*i + 0] << ' '
<< grid->node_coordinates[3*i + 1] << ' '
<< grid->node_coordinates[3*i + 2] << '\n';
}
}
{
Tag cellstag("Cells", os);
pm.clear();
pm["type"] = "Int32";
pm["NumberOfComponents"] = "1";
pm["format"] = "ascii";
std::vector<int> cell_numpts;
cell_numpts.reserve(num_cells);
{
pm["Name"] = "connectivity";
Tag t("DataArray", pm, os);
int hf = 0;
for (int c = 0; c < num_cells; ++c) {
std::set<int> cell_pts;
for (; hf < grid->cell_facepos[c+1]; ++hf) {
int f = grid->cell_faces[hf];
const int* fnbeg = grid->face_nodes + grid->face_nodepos[f];
const int* fnend = grid->face_nodes + grid->face_nodepos[f+1];
cell_pts.insert(fnbeg, fnend);
}
cell_numpts.push_back(cell_pts.size());
Tag::indent(os);
std::copy(cell_pts.begin(), cell_pts.end(),
std::ostream_iterator<int>(os, " "));
os << '\n';
}
}
{
pm["Name"] = "offsets";
Tag t("DataArray", pm, os);
int offset = 0;
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
offset += cell_numpts[c];
os << offset << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
std::vector<int> cell_foffsets;
cell_foffsets.reserve(num_cells);
{
pm["Name"] = "faces";
Tag t("DataArray", pm, os);
const int* fp = grid->cell_facepos;
int offset = 0;
for (int c = 0; c < num_cells; ++c) {
Tag::indent(os);
os << fp[c+1] - fp[c] << '\n';
++offset;
for (int hf = fp[c]; hf < fp[c+1]; ++hf) {
int f = grid->cell_faces[hf];
const int* np = grid->face_nodepos;
int f_num_pts = np[f+1] - np[f];
Tag::indent(os);
os << f_num_pts << ' ';
++offset;
std::copy(grid->face_nodes + np[f],
grid->face_nodes + np[f+1],
std::ostream_iterator<int>(os, " "));
os << '\n';
offset += f_num_pts;
}
cell_foffsets.push_back(offset);
}
}
{
pm["Name"] = "faceoffsets";
Tag t("DataArray", pm, os);
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << cell_foffsets[c] << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
{
pm["type"] = "UInt8";
pm["Name"] = "types";
Tag t("DataArray", pm, os);
const int num_per_line = 10;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << "42 ";
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
}
{
pm.clear();
pm["Scalars"] = "saturation";
Tag celldatatag("CellData", pm, os);
pm.clear();
pm["type"] = "Int32";
pm["NumberOfComponents"] = "1";
pm["format"] = "ascii";
pm["type"] = "Float64";
{
pm["Name"] = "pressure";
Tag ptag("DataArray", pm, os);
const int num_per_line = 5;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << state.pressure()[c] << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
{
pm["Name"] = "saturation";
Tag ptag("DataArray", pm, os);
const int num_per_line = 5;
for (int c = 0; c < num_cells; ++c) {
if (c % num_per_line == 0) {
Tag::indent(os);
}
os << state.saturation()[2*c] << ' ';
if (c % num_per_line == num_per_line - 1
|| c == num_cells - 1) {
os << '\n';
}
}
}
}
}
static void toWaterSat(const std::vector<double>& sboth, std::vector<double>& sw)
{
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
}
static void toBothSat(const std::vector<double>& sw, std::vector<double>& sboth)
{
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
}
// --------------- Types needed to define transport solver ---------------
class SimpleFluid2pWrappingProps
{
public:
SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props)
: props_(props)
{
if (props.numPhases() != 2) {
THROW("SimpleFluid2pWrapper requires 2 phases.");
}
}
double density(int phase) const
{
return props_.density()[phase];
}
template <class Sat,
class Mob,
class DMob>
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
{
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
const double* mu = props_.viscosity();
mob[0] /= mu[0];
mob[1] /= mu[1];
// Recall that we use Fortran ordering for kr derivatives,
// therefore dmob[i*2 + j] is row j and column i of the
// matrix.
// Each row corresponds to a kr function, so which mu to
// divide by also depends on the row, j.
dmob[0*2 + 0] /= mu[0];
dmob[0*2 + 1] /= mu[1];
dmob[1*2 + 0] /= mu[0];
dmob[1*2 + 1] /= mu[1];
}
template <class Sat,
class Pcap,
class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pc[2];
double dpc[4];
props_.capPress(1, &s[0], &c, pc, dpc);
pcap = pc[0];
ASSERT(pc[1] == 0.0);
dpcap = dpc[0];
ASSERT(dpc[1] == 0.0);
ASSERT(dpc[2] == 0.0);
ASSERT(dpc[3] == 0.0);
}
/// \todo Properly implement s_min() and s_max().
/// We must think about how to do this in
/// the *Properties* classes.
double s_min(int c) const { (void) c; return 0.0; }
double s_max(int c) const { (void) c; return 1.0; }
private:
const Opm::IncompPropertiesInterface& props_;
};
typedef SimpleFluid2pWrappingProps TwophaseFluid;
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm <Vector, MaxAbs>::norm(v);
}
};
typedef Opm::ImplicitTransport<TransportModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
Opm::parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Reading various control parameters.
const int num_psteps = param.getDefault("num_psteps", 1);
const double stepsize_days = param.getDefault("stepsize_days", 1.0);
const double stepsize = Opm::unit::convert::from(stepsize_days, Opm::unit::day);
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
std::string output_dir;
if (output) {
output_dir = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir);
create_directories(fpath);
}
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<Opm::Grid> grid;
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
// Grid init
grid.reset(new Opm::Grid(deck));
// Rock and fluid init
const int* gc = grid->c_grid()->global_cell;
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
grid.reset(new Opm::Grid(nx, ny, nz));
// Rock and fluid init.
props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
}
// Extra rock init.
std::vector<double> porevol;
compute_porevolume(grid->c_grid(), *props, porevol);
double tot_porevol = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Extra fluid init for transport solver.
TwophaseFluid fluid(*props);
// Solvers init.
PressureSolver psolver(grid->c_grid(), *props);
TransportModel model (fluid, *grid->c_grid(), porevol, 0, guess_old_solution);
TransportSolver tsolver(model);
// State-related and source-related variables init.
std::vector<double> totmob;
ReservoirState state(grid->c_grid(), props->numPhases());
// We need a separate reorder_sat, because the reorder
// code expects a scalar sw, not both sw and so.
std::vector<double> reorder_sat(grid->c_grid()->number_of_cells);
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
std::vector<double> src (grid->c_grid()->number_of_cells, 0.0);
src[0] = flow_per_sec;
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = { 1.0, 0.0 };
double ssink[] = { 0.0, 1.0 };
double zdummy[] = { 0.0, 0.0 };
append_transport_source(0, 2, 0, src[0], ssrc, zdummy, tsrc);
append_transport_source(grid->c_grid()->number_of_cells - 1, 2, 0,
src.back(), ssink, zdummy, tsrc);
std::vector<double> reorder_src = src;
// Control init.
Opm::ImplicitTransportDetails::NRReport rpt;
Opm::ImplicitTransportDetails::NRControl ctrl;
double current_time = 0.0;
double total_time = stepsize*num_psteps;
ctrl.max_it = param.getDefault("max_it", 20);
ctrl.verbosity = param.getDefault("verbosity", 0);
ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
// Linear solver init.
using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
CSRMatrixUmfpackSolver linsolve;
// Warn if any parameters are unused.
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
// Write parameters used for later reference.
if (output) {
param.writeParam(output_dir + "/spu_2p.param");
}
// Main simulation loop.
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
for (int pstep = 0; pstep < num_psteps; ++pstep) {
std::cout << "\n\n--------------- Simulation step number " << pstep
<< " ---------------"
<< "\n Current time (days) " << Opm::unit::convert::to(current_time, Opm::unit::day)
<< "\n Current stepsize (days) " << Opm::unit::convert::to(stepsize, Opm::unit::day)
<< "\n Total time (days) " << Opm::unit::convert::to(total_time, Opm::unit::day)
<< "\n" << std::endl;
if (output) {
outputState(grid->c_grid(), state, pstep, output_dir);
}
compute_totmob(*props, state.saturation(), totmob);
psolver.solve(grid->c_grid(), totmob, src, state);
if (use_reorder) {
toWaterSat(state.saturation(), reorder_sat);
// We must treat reorder_src here,
// if we are to handle anything but simple water
// injection, since it is expected to be
// equal to total outflow (if negative)
// and water inflow (if positive).
// Also, for anything but noflow boundaries,
// boundary flows must be accumulated into
// source term following the same convention.
twophasetransport(&porevol[0],
&reorder_src[0],
stepsize,
const_cast<UnstructuredGrid*>(grid->c_grid()),
props.get(),
&state.faceflux()[0],
&reorder_sat[0]);
toBothSat(reorder_sat, state.saturation());
} else {
tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt);
std::cout << rpt;
}
current_time += stepsize;
}
if (output) {
outputState(grid->c_grid(), state, num_psteps, output_dir);
}
destroy_transport_source(tsrc);
}