mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
852 lines
24 KiB
C++
852 lines
24 KiB
C++
/*===========================================================================
|
|
//
|
|
// File: spu_2p.cpp
|
|
//
|
|
// Created: 2011-10-05 10:29:01+0200
|
|
//
|
|
// Authors: Ingeborg S. Ligaarden <Ingeborg.Ligaarden@sintef.no>
|
|
// Jostein R. Natvig <Jostein.R.Natvig@sintef.no>
|
|
// Halvor M. Nilsen <HalvorMoll.Nilsen@sintef.no>
|
|
// Atgeirr F. Rasmussen <atgeirr@sintef.no>
|
|
// Bård Skaflestad <Bard.Skaflestad@sintef.no>
|
|
//
|
|
//==========================================================================*/
|
|
|
|
|
|
/*
|
|
Copyright 2011 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2011 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
|
|
#include <opm/core/linalg/sparse_sys.h>
|
|
|
|
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
|
|
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
|
|
|
#include <opm/core/utility/cart_grid.h>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/utility/cpgpreprocess/cgridinterface.h>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
|
|
#include <opm/core/fluid/SimpleFluid2p.hpp>
|
|
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
|
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
|
|
|
|
#include <opm/core/transport/transport_source.h>
|
|
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
|
|
#include <opm/core/transport/NormSupport.hpp>
|
|
#include <opm/core/transport/ImplicitAssembly.hpp>
|
|
#include <opm/core/transport/ImplicitTransport.hpp>
|
|
#include <opm/core/transport/JacobianSystem.hpp>
|
|
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
|
|
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
|
|
|
|
#include <opm/core/transport/reorder/twophasetransport.hpp>
|
|
|
|
#include <boost/filesystem/convenience.hpp>
|
|
#include <boost/scoped_ptr.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
|
|
#include <algorithm>
|
|
#include <tr1/array>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <fstream>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
/// Concrete grid class constructing a
|
|
/// corner point grid from a deck,
|
|
/// or a cartesian grid.
|
|
class Grid
|
|
{
|
|
public:
|
|
Grid(const Opm::EclipseGridParser& deck)
|
|
{
|
|
// Extract data from deck.
|
|
const std::vector<double>& zcorn = deck.getFloatingPointValue("ZCORN");
|
|
const std::vector<double>& coord = deck.getFloatingPointValue("COORD");
|
|
const std::vector<int>& actnum = deck.getIntegerValue("ACTNUM");
|
|
std::vector<int> dims;
|
|
if (deck.hasField("DIMENS")) {
|
|
dims = deck.getIntegerValue("DIMENS");
|
|
} else if (deck.hasField("SPECGRID")) {
|
|
dims = deck.getSPECGRID().dimensions;
|
|
} else {
|
|
THROW("Deck must have either DIMENS or SPECGRID.");
|
|
}
|
|
|
|
// Collect in input struct for preprocessing.
|
|
struct grdecl grdecl;
|
|
grdecl.zcorn = &zcorn[0];
|
|
grdecl.coord = &coord[0];
|
|
grdecl.actnum = &actnum[0];
|
|
grdecl.dims[0] = dims[0];
|
|
grdecl.dims[1] = dims[1];
|
|
grdecl.dims[2] = dims[2];
|
|
|
|
// Process and compute.
|
|
ug_ = preprocess(&grdecl, 0.0);
|
|
compute_geometry(ug_);
|
|
}
|
|
|
|
Grid(int nx, int ny)
|
|
{
|
|
ug_ = create_cart_grid_2d(nx, ny);
|
|
}
|
|
|
|
Grid(int nx, int ny, int nz)
|
|
{
|
|
ug_ = create_cart_grid_3d(nx, ny, nz);
|
|
}
|
|
|
|
~Grid()
|
|
{
|
|
free_grid(ug_);
|
|
}
|
|
|
|
virtual const UnstructuredGrid* c_grid() const
|
|
{
|
|
return ug_;
|
|
}
|
|
|
|
private:
|
|
// Disable copying and assignment.
|
|
Grid(const Grid& other);
|
|
Grid& operator=(const Grid& other);
|
|
struct UnstructuredGrid* ug_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
|
|
class ReservoirState {
|
|
public:
|
|
ReservoirState(const UnstructuredGrid* g, const int num_phases = 2)
|
|
: press_ (g->number_of_cells, 0.0),
|
|
fpress_(g->number_of_faces, 0.0),
|
|
flux_ (g->number_of_faces, 0.0),
|
|
sat_ (num_phases * g->number_of_cells, 0.0)
|
|
{
|
|
for (int cell = 0; cell < g->number_of_cells; ++cell) {
|
|
sat_[num_phases*cell + num_phases - 1] = 1.0;
|
|
}
|
|
}
|
|
|
|
int numPhases() const { return sat_.size()/press_.size(); }
|
|
|
|
::std::vector<double>& pressure () { return press_ ; }
|
|
::std::vector<double>& facepressure() { return fpress_; }
|
|
::std::vector<double>& faceflux () { return flux_ ; }
|
|
::std::vector<double>& saturation () { return sat_ ; }
|
|
|
|
const ::std::vector<double>& pressure () const { return press_ ; }
|
|
const ::std::vector<double>& facepressure() const { return fpress_; }
|
|
const ::std::vector<double>& faceflux () const { return flux_ ; }
|
|
const ::std::vector<double>& saturation () const { return sat_ ; }
|
|
|
|
private:
|
|
::std::vector<double> press_ ;
|
|
::std::vector<double> fpress_;
|
|
::std::vector<double> flux_ ;
|
|
::std::vector<double> sat_ ;
|
|
};
|
|
|
|
|
|
|
|
|
|
class PressureSolver {
|
|
public:
|
|
PressureSolver(const UnstructuredGrid* g,
|
|
const Opm::IncompPropertiesInterface& props)
|
|
: htrans_(g->cell_facepos[ g->number_of_cells ]),
|
|
trans_ (g->number_of_faces),
|
|
gpress_(g->cell_facepos[ g->number_of_cells ])
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(g);
|
|
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
|
|
|
|
h_ = ifs_tpfa_construct(gg);
|
|
}
|
|
|
|
~PressureSolver()
|
|
{
|
|
ifs_tpfa_destroy(h_);
|
|
}
|
|
|
|
template <class State>
|
|
void
|
|
solve(const UnstructuredGrid* g ,
|
|
const ::std::vector<double>& totmob,
|
|
const ::std::vector<double>& src ,
|
|
State& state )
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(g);
|
|
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
|
|
|
|
// No gravity
|
|
::std::fill(gpress_.begin(), gpress_.end(), double(0.0));
|
|
|
|
ifs_tpfa_assemble(gg, &trans_[0], &src[0], &gpress_[0], h_);
|
|
|
|
using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
|
|
|
|
CSRMatrixUmfpackSolver linsolve;
|
|
linsolve.solve(h_->A, h_->b, h_->x);
|
|
|
|
ifs_tpfa_press_flux(gg, &trans_[0], h_,
|
|
&state.pressure()[0],
|
|
&state.faceflux()[0]);
|
|
}
|
|
|
|
private:
|
|
::std::vector<double> htrans_;
|
|
::std::vector<double> trans_ ;
|
|
::std::vector<double> gpress_;
|
|
|
|
struct ifs_tpfa_data* h_;
|
|
};
|
|
|
|
|
|
|
|
|
|
static void
|
|
compute_porevolume(const UnstructuredGrid* g,
|
|
const Opm::IncompPropertiesInterface& props,
|
|
std::vector<double>& porevol)
|
|
{
|
|
int num_cells = g->number_of_cells;
|
|
porevol.resize(num_cells);
|
|
const double* poro = props.porosity();
|
|
::std::transform(poro, poro + num_cells,
|
|
g->cell_volumes,
|
|
porevol.begin(),
|
|
::std::multiplies<double>());
|
|
}
|
|
|
|
|
|
static void
|
|
compute_totmob(const Opm::IncompPropertiesInterface& props,
|
|
const std::vector<double>& s,
|
|
std::vector<double>& totmob)
|
|
{
|
|
int num_cells = props.numCells();
|
|
int num_phases = props.numPhases();
|
|
totmob.resize(num_cells);
|
|
ASSERT(int(s.size()) == num_cells*num_phases);
|
|
std::vector<int> cells(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
cells[cell] = cell;
|
|
}
|
|
std::vector<double> kr(num_cells*num_phases);
|
|
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
|
|
const double* mu = props.viscosity();
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
totmob[cell] = 0;
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
totmob[cell] += kr[2*cell + phase]/mu[phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <class State>
|
|
void outputState(const UnstructuredGrid* grid,
|
|
const State& state,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
std::ostringstream vtkfilename;
|
|
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
|
std::ofstream vtkfile(vtkfilename.str().c_str());
|
|
if (!vtkfile) {
|
|
THROW("Failed to open " << vtkfilename.str());
|
|
}
|
|
writeVtkDataGeneralGrid(grid, state, vtkfile);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class State>
|
|
void writeVtkDataAllCartesian(const std::tr1::array<int, 3>& dims,
|
|
const std::tr1::array<double, 3>& cell_size,
|
|
const State& state,
|
|
std::ostream& vtk_file)
|
|
{
|
|
// Dimension is hardcoded in the prototype and the next two lines,
|
|
// but the rest is flexible (allows dimension == 2 or 3).
|
|
int dimension = 3;
|
|
int num_cells = dims[0]*dims[1]*dims[2];
|
|
|
|
ASSERT(dimension == 2 || dimension == 3);
|
|
ASSERT(num_cells = dims[0]*dims[1]* (dimension == 2 ? 1 : dims[2]));
|
|
|
|
vtk_file << "# vtk DataFile Version 2.0\n";
|
|
vtk_file << "Structured Grid\n \n";
|
|
vtk_file << "ASCII \n";
|
|
vtk_file << "DATASET STRUCTURED_POINTS\n";
|
|
|
|
vtk_file << "DIMENSIONS "
|
|
<< dims[0] + 1 << " "
|
|
<< dims[1] + 1 << " ";
|
|
if (dimension == 3) {
|
|
vtk_file << dims[2] + 1;
|
|
} else {
|
|
vtk_file << 1;
|
|
}
|
|
vtk_file << "\n";
|
|
|
|
vtk_file << "ORIGIN " << 0.0 << " " << 0.0 << " " << 0.0 << "\n";
|
|
|
|
vtk_file << "SPACING " << cell_size[0] << " " << cell_size[1];
|
|
if (dimension == 3) {
|
|
vtk_file << " " << cell_size[2];
|
|
} else {
|
|
vtk_file << " " << 0.0;
|
|
}
|
|
vtk_file << "\n";
|
|
|
|
vtk_file << "CELL_DATA " << num_cells << '\n';
|
|
vtk_file << "SCALARS pressure float" << '\n';
|
|
vtk_file << "LOOKUP_TABLE pressure_table " << '\n';
|
|
for (int i = 0; i < num_cells; ++i) {
|
|
vtk_file << state.pressure()[i] << '\n';
|
|
}
|
|
|
|
ASSERT(state.numPhases() == 2);
|
|
vtk_file << "SCALARS saturation float" << '\n';
|
|
vtk_file << "LOOKUP_TABLE saturation_table " << '\n';
|
|
for (int i = 0; i < num_cells; ++i) {
|
|
double s = state.saturation()[2*i];
|
|
if (s > 1e-10) {
|
|
vtk_file << s << '\n';
|
|
} else {
|
|
vtk_file << 0.0 << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef std::map<std::string, std::string> PMap;
|
|
|
|
|
|
struct Tag
|
|
{
|
|
Tag(const std::string& tag, const PMap& props, std::ostream& os)
|
|
: name_(tag), os_(os)
|
|
{
|
|
indent(os);
|
|
os << "<" << tag;
|
|
for (PMap::const_iterator it = props.begin(); it != props.end(); ++it) {
|
|
os << " " << it->first << "=\"" << it->second << "\"";
|
|
}
|
|
os << ">\n";
|
|
++indent_;
|
|
}
|
|
Tag(const std::string& tag, std::ostream& os)
|
|
: name_(tag), os_(os)
|
|
{
|
|
indent(os);
|
|
os << "<" << tag << ">\n";
|
|
++indent_;
|
|
}
|
|
~Tag()
|
|
{
|
|
--indent_;
|
|
indent(os_);
|
|
os_ << "</" << name_ << ">\n";
|
|
}
|
|
static void indent(std::ostream& os)
|
|
{
|
|
for (int i = 0; i < indent_; ++i) {
|
|
os << " ";
|
|
}
|
|
}
|
|
private:
|
|
static int indent_;
|
|
std::string name_;
|
|
std::ostream& os_;
|
|
};
|
|
|
|
int Tag::indent_ = 0;
|
|
|
|
|
|
template <class State>
|
|
void writeVtkDataGeneralGrid(const UnstructuredGrid* grid,
|
|
const State& state,
|
|
std::ostream& os)
|
|
{
|
|
if (grid->dimensions != 3) {
|
|
THROW("Vtk output for 3d grids only");
|
|
}
|
|
os.precision(12);
|
|
os << "<?xml version=\"1.0\"?>\n";
|
|
PMap pm;
|
|
pm["type"] = "UnstructuredGrid";
|
|
Tag vtkfiletag("VTKFile", pm, os);
|
|
Tag ugtag("UnstructuredGrid", os);
|
|
int num_pts = grid->number_of_nodes;
|
|
int num_cells = grid->number_of_cells;
|
|
pm.clear();
|
|
pm["NumberOfPoints"] = boost::lexical_cast<std::string>(num_pts);
|
|
pm["NumberOfCells"] = boost::lexical_cast<std::string>(num_cells);
|
|
Tag piecetag("Piece", pm, os);
|
|
{
|
|
Tag pointstag("Points", os);
|
|
pm.clear();
|
|
pm["type"] = "Float64";
|
|
pm["Name"] = "Coordinates";
|
|
pm["NumberOfComponents"] = "3";
|
|
pm["format"] = "ascii";
|
|
Tag datag("DataArray", pm, os);
|
|
for (int i = 0; i < num_pts; ++i) {
|
|
Tag::indent(os);
|
|
os << grid->node_coordinates[3*i + 0] << ' '
|
|
<< grid->node_coordinates[3*i + 1] << ' '
|
|
<< grid->node_coordinates[3*i + 2] << '\n';
|
|
}
|
|
}
|
|
{
|
|
Tag cellstag("Cells", os);
|
|
pm.clear();
|
|
pm["type"] = "Int32";
|
|
pm["NumberOfComponents"] = "1";
|
|
pm["format"] = "ascii";
|
|
std::vector<int> cell_numpts;
|
|
cell_numpts.reserve(num_cells);
|
|
{
|
|
pm["Name"] = "connectivity";
|
|
Tag t("DataArray", pm, os);
|
|
int hf = 0;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
std::set<int> cell_pts;
|
|
for (; hf < grid->cell_facepos[c+1]; ++hf) {
|
|
int f = grid->cell_faces[hf];
|
|
const int* fnbeg = grid->face_nodes + grid->face_nodepos[f];
|
|
const int* fnend = grid->face_nodes + grid->face_nodepos[f+1];
|
|
cell_pts.insert(fnbeg, fnend);
|
|
}
|
|
cell_numpts.push_back(cell_pts.size());
|
|
Tag::indent(os);
|
|
std::copy(cell_pts.begin(), cell_pts.end(),
|
|
std::ostream_iterator<int>(os, " "));
|
|
os << '\n';
|
|
}
|
|
}
|
|
{
|
|
pm["Name"] = "offsets";
|
|
Tag t("DataArray", pm, os);
|
|
int offset = 0;
|
|
const int num_per_line = 10;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (c % num_per_line == 0) {
|
|
Tag::indent(os);
|
|
}
|
|
offset += cell_numpts[c];
|
|
os << offset << ' ';
|
|
if (c % num_per_line == num_per_line - 1
|
|
|| c == num_cells - 1) {
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
std::vector<int> cell_foffsets;
|
|
cell_foffsets.reserve(num_cells);
|
|
{
|
|
pm["Name"] = "faces";
|
|
Tag t("DataArray", pm, os);
|
|
const int* fp = grid->cell_facepos;
|
|
int offset = 0;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
Tag::indent(os);
|
|
os << fp[c+1] - fp[c] << '\n';
|
|
++offset;
|
|
for (int hf = fp[c]; hf < fp[c+1]; ++hf) {
|
|
int f = grid->cell_faces[hf];
|
|
const int* np = grid->face_nodepos;
|
|
int f_num_pts = np[f+1] - np[f];
|
|
Tag::indent(os);
|
|
os << f_num_pts << ' ';
|
|
++offset;
|
|
std::copy(grid->face_nodes + np[f],
|
|
grid->face_nodes + np[f+1],
|
|
std::ostream_iterator<int>(os, " "));
|
|
os << '\n';
|
|
offset += f_num_pts;
|
|
}
|
|
cell_foffsets.push_back(offset);
|
|
}
|
|
}
|
|
{
|
|
pm["Name"] = "faceoffsets";
|
|
Tag t("DataArray", pm, os);
|
|
const int num_per_line = 10;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (c % num_per_line == 0) {
|
|
Tag::indent(os);
|
|
}
|
|
os << cell_foffsets[c] << ' ';
|
|
if (c % num_per_line == num_per_line - 1
|
|
|| c == num_cells - 1) {
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
{
|
|
pm["type"] = "UInt8";
|
|
pm["Name"] = "types";
|
|
Tag t("DataArray", pm, os);
|
|
const int num_per_line = 10;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (c % num_per_line == 0) {
|
|
Tag::indent(os);
|
|
}
|
|
os << "42 ";
|
|
if (c % num_per_line == num_per_line - 1
|
|
|| c == num_cells - 1) {
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
{
|
|
pm.clear();
|
|
pm["Scalars"] = "saturation";
|
|
Tag celldatatag("CellData", pm, os);
|
|
pm.clear();
|
|
pm["type"] = "Int32";
|
|
pm["NumberOfComponents"] = "1";
|
|
pm["format"] = "ascii";
|
|
pm["type"] = "Float64";
|
|
{
|
|
pm["Name"] = "pressure";
|
|
Tag ptag("DataArray", pm, os);
|
|
const int num_per_line = 5;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (c % num_per_line == 0) {
|
|
Tag::indent(os);
|
|
}
|
|
os << state.pressure()[c] << ' ';
|
|
if (c % num_per_line == num_per_line - 1
|
|
|| c == num_cells - 1) {
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
{
|
|
pm["Name"] = "saturation";
|
|
Tag ptag("DataArray", pm, os);
|
|
const int num_per_line = 5;
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (c % num_per_line == 0) {
|
|
Tag::indent(os);
|
|
}
|
|
os << state.saturation()[2*c] << ' ';
|
|
if (c % num_per_line == num_per_line - 1
|
|
|| c == num_cells - 1) {
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
static void toWaterSat(const std::vector<double>& sboth, std::vector<double>& sw)
|
|
{
|
|
int num = sboth.size()/2;
|
|
sw.resize(num);
|
|
for (int i = 0; i < num; ++i) {
|
|
sw[i] = sboth[2*i];
|
|
}
|
|
}
|
|
|
|
static void toBothSat(const std::vector<double>& sw, std::vector<double>& sboth)
|
|
{
|
|
int num = sw.size();
|
|
sboth.resize(2*num);
|
|
for (int i = 0; i < num; ++i) {
|
|
sboth[2*i] = sw[i];
|
|
sboth[2*i + 1] = 1.0 - sw[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// --------------- Types needed to define transport solver ---------------
|
|
|
|
class SimpleFluid2pWrappingProps
|
|
{
|
|
public:
|
|
SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props)
|
|
: props_(props)
|
|
{
|
|
if (props.numPhases() != 2) {
|
|
THROW("SimpleFluid2pWrapper requires 2 phases.");
|
|
}
|
|
}
|
|
|
|
double density(int phase) const
|
|
{
|
|
return props_.density()[phase];
|
|
}
|
|
|
|
template <class Sat,
|
|
class Mob,
|
|
class DMob>
|
|
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
|
|
{
|
|
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
|
|
const double* mu = props_.viscosity();
|
|
mob[0] /= mu[0];
|
|
mob[1] /= mu[1];
|
|
// Recall that we use Fortran ordering for kr derivatives,
|
|
// therefore dmob[i*2 + j] is row j and column i of the
|
|
// matrix.
|
|
// Each row corresponds to a kr function, so which mu to
|
|
// divide by also depends on the row, j.
|
|
dmob[0*2 + 0] /= mu[0];
|
|
dmob[0*2 + 1] /= mu[1];
|
|
dmob[1*2 + 0] /= mu[0];
|
|
dmob[1*2 + 1] /= mu[1];
|
|
}
|
|
|
|
template <class Sat,
|
|
class Pcap,
|
|
class DPcap>
|
|
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
|
|
{
|
|
double pc[2];
|
|
double dpc[4];
|
|
props_.capPress(1, &s[0], &c, pc, dpc);
|
|
pcap = pc[0];
|
|
ASSERT(pc[1] == 0.0);
|
|
dpcap = dpc[0];
|
|
ASSERT(dpc[1] == 0.0);
|
|
ASSERT(dpc[2] == 0.0);
|
|
ASSERT(dpc[3] == 0.0);
|
|
}
|
|
|
|
/// \todo Properly implement s_min() and s_max().
|
|
/// We must think about how to do this in
|
|
/// the *Properties* classes.
|
|
double s_min(int c) const { (void) c; return 0.0; }
|
|
double s_max(int c) const { (void) c; return 1.0; }
|
|
|
|
private:
|
|
const Opm::IncompPropertiesInterface& props_;
|
|
};
|
|
|
|
typedef SimpleFluid2pWrappingProps TwophaseFluid;
|
|
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
|
|
|
|
using namespace Opm::ImplicitTransportDefault;
|
|
|
|
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
|
|
typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
|
|
|
|
template <class Vector>
|
|
class MaxNorm {
|
|
public:
|
|
static double
|
|
norm(const Vector& v) {
|
|
return AccumulationNorm <Vector, MaxAbs>::norm(v);
|
|
}
|
|
};
|
|
|
|
typedef Opm::ImplicitTransport<TransportModel,
|
|
JacSys ,
|
|
MaxNorm ,
|
|
VectorNegater ,
|
|
VectorZero ,
|
|
MatrixZero ,
|
|
VectorAssign > TransportSolver;
|
|
|
|
|
|
|
|
// ----------------- Main program -----------------
|
|
int
|
|
main(int argc, char** argv)
|
|
{
|
|
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
|
|
Opm::parameter::ParameterGroup param(argc, argv, false);
|
|
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
|
|
|
// Reading various control parameters.
|
|
const int num_psteps = param.getDefault("num_psteps", 1);
|
|
const double stepsize_days = param.getDefault("stepsize_days", 1.0);
|
|
const double stepsize = Opm::unit::convert::from(stepsize_days, Opm::unit::day);
|
|
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
|
|
const bool use_reorder = param.getDefault("use_reorder", true);
|
|
const bool output = param.getDefault("output", true);
|
|
std::string output_dir;
|
|
if (output) {
|
|
output_dir = param.getDefault("output_dir", std::string("output"));
|
|
// Ensure that output dir exists
|
|
boost::filesystem::path fpath(output_dir);
|
|
create_directories(fpath);
|
|
}
|
|
|
|
// If we have a "deck_filename", grid and props will be read from that.
|
|
bool use_deck = param.has("deck_filename");
|
|
boost::scoped_ptr<Opm::Grid> grid;
|
|
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
|
|
if (use_deck) {
|
|
std::string deck_filename = param.get<std::string>("deck_filename");
|
|
Opm::EclipseGridParser deck(deck_filename);
|
|
// Grid init
|
|
grid.reset(new Opm::Grid(deck));
|
|
// Rock and fluid init
|
|
const int* gc = grid->c_grid()->global_cell;
|
|
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
|
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
|
|
} else {
|
|
// Grid init.
|
|
const int nx = param.getDefault("nx", 100);
|
|
const int ny = param.getDefault("ny", 100);
|
|
const int nz = param.getDefault("nz", 1);
|
|
grid.reset(new Opm::Grid(nx, ny, nz));
|
|
// Rock and fluid init.
|
|
props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
|
}
|
|
|
|
// Extra rock init.
|
|
std::vector<double> porevol;
|
|
compute_porevolume(grid->c_grid(), *props, porevol);
|
|
double tot_porevol = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
|
|
|
// Extra fluid init for transport solver.
|
|
TwophaseFluid fluid(*props);
|
|
|
|
// Solvers init.
|
|
PressureSolver psolver(grid->c_grid(), *props);
|
|
TransportModel model (fluid, *grid->c_grid(), porevol, 0, guess_old_solution);
|
|
TransportSolver tsolver(model);
|
|
|
|
// State-related and source-related variables init.
|
|
std::vector<double> totmob;
|
|
ReservoirState state(grid->c_grid(), props->numPhases());
|
|
// We need a separate reorder_sat, because the reorder
|
|
// code expects a scalar sw, not both sw and so.
|
|
std::vector<double> reorder_sat(grid->c_grid()->number_of_cells);
|
|
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
|
|
std::vector<double> src (grid->c_grid()->number_of_cells, 0.0);
|
|
src[0] = flow_per_sec;
|
|
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
|
|
TransportSource* tsrc = create_transport_source(2, 2);
|
|
double ssrc[] = { 1.0, 0.0 };
|
|
double ssink[] = { 0.0, 1.0 };
|
|
double zdummy[] = { 0.0, 0.0 };
|
|
append_transport_source(0, 2, 0, src[0], ssrc, zdummy, tsrc);
|
|
append_transport_source(grid->c_grid()->number_of_cells - 1, 2, 0,
|
|
src.back(), ssink, zdummy, tsrc);
|
|
std::vector<double> reorder_src = src;
|
|
|
|
// Control init.
|
|
Opm::ImplicitTransportDetails::NRReport rpt;
|
|
Opm::ImplicitTransportDetails::NRControl ctrl;
|
|
double current_time = 0.0;
|
|
double total_time = stepsize*num_psteps;
|
|
ctrl.max_it = param.getDefault("max_it", 20);
|
|
ctrl.verbosity = param.getDefault("verbosity", 0);
|
|
ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
|
|
|
|
// Linear solver init.
|
|
using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
|
|
CSRMatrixUmfpackSolver linsolve;
|
|
|
|
// Warn if any parameters are unused.
|
|
if (param.anyUnused()) {
|
|
std::cout << "-------------------- Unused parameters: --------------------\n";
|
|
param.displayUsage();
|
|
std::cout << "----------------------------------------------------------------" << std::endl;
|
|
}
|
|
|
|
// Write parameters used for later reference.
|
|
if (output) {
|
|
param.writeParam(output_dir + "/spu_2p.param");
|
|
}
|
|
|
|
// Main simulation loop.
|
|
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
|
|
for (int pstep = 0; pstep < num_psteps; ++pstep) {
|
|
std::cout << "\n\n--------------- Simulation step number " << pstep
|
|
<< " ---------------"
|
|
<< "\n Current time (days) " << Opm::unit::convert::to(current_time, Opm::unit::day)
|
|
<< "\n Current stepsize (days) " << Opm::unit::convert::to(stepsize, Opm::unit::day)
|
|
<< "\n Total time (days) " << Opm::unit::convert::to(total_time, Opm::unit::day)
|
|
<< "\n" << std::endl;
|
|
|
|
if (output) {
|
|
outputState(grid->c_grid(), state, pstep, output_dir);
|
|
}
|
|
|
|
compute_totmob(*props, state.saturation(), totmob);
|
|
psolver.solve(grid->c_grid(), totmob, src, state);
|
|
|
|
if (use_reorder) {
|
|
toWaterSat(state.saturation(), reorder_sat);
|
|
// We must treat reorder_src here,
|
|
// if we are to handle anything but simple water
|
|
// injection, since it is expected to be
|
|
// equal to total outflow (if negative)
|
|
// and water inflow (if positive).
|
|
// Also, for anything but noflow boundaries,
|
|
// boundary flows must be accumulated into
|
|
// source term following the same convention.
|
|
twophasetransport(&porevol[0],
|
|
&reorder_src[0],
|
|
stepsize,
|
|
const_cast<UnstructuredGrid*>(grid->c_grid()),
|
|
props.get(),
|
|
&state.faceflux()[0],
|
|
&reorder_sat[0]);
|
|
toBothSat(reorder_sat, state.saturation());
|
|
} else {
|
|
tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt);
|
|
std::cout << rpt;
|
|
}
|
|
|
|
current_time += stepsize;
|
|
}
|
|
|
|
if (output) {
|
|
outputState(grid->c_grid(), state, num_psteps, output_dir);
|
|
}
|
|
|
|
destroy_transport_source(tsrc);
|
|
}
|