opm-simulators/opm/simulators/wells/MultisegmentWellEval.hpp
2022-11-30 23:15:25 +01:00

297 lines
13 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_EVAL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_EVAL_HEADER_INCLUDED
#include <opm/simulators/wells/MultisegmentWellGeneric.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <array>
#include <memory>
#include <utility>
#include <vector>
namespace Dune {
template<class Matrix> class UMFPack;
}
namespace Opm
{
class ConvergenceReport;
class GroupState;
class Schedule;
class WellContributions;
template<class FluidSystem, class Indices, class Scalar> class WellInterfaceIndices;
class WellState;
template<typename FluidSystem, typename Indices, typename Scalar>
class MultisegmentWellEval : public MultisegmentWellGeneric<Scalar>
{
public:
/// add the contribution (C, D, B matrices) of this Well to the WellContributions object
void addWellContribution(WellContributions& wellContribs) const;
protected:
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: we need to have order for the primary variables and also the order for the well equations.
// sometimes, they are similar, while sometimes, they can have very different forms.
// Table showing the primary variable indices, depending on what phases are present:
//
// WOG OG WG WO W/O/G (single phase)
// WQTotal 0 0 0 0 0
// WFrac 1 -1000 1 1 -1000
// GFrac 2 1 -1000 -1000 -1000
// Spres 3 2 2 2 1
static constexpr bool has_water = (Indices::waterSwitchIdx >= 0);
static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0);
static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0;
// In the implementation, one should use has_wfrac_variable
// rather than has_water to check if you should do something
// with the variable at the WFrac location, similar for GFrac.
static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1;
static constexpr bool has_gfrac_variable = has_gas && has_oil;
static constexpr int WQTotal = 0;
static constexpr int WFrac = has_wfrac_variable ? 1 : -1000;
static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000;
static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1;
// the number of well equations TODO: it should have a more general strategy for it
static constexpr int numWellEq = Indices::numPhases + 1;
// sparsity pattern for the matrices
// [A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
using VectorBlockWellType = Dune::FieldVector<Scalar, numWellEq>;
using BVectorWell = Dune::BlockVector<VectorBlockWellType>;
using VectorBlockType = Dune::FieldVector<Scalar, Indices::numEq>;
using BVector = Dune::BlockVector<VectorBlockType>;
// the matrix type for the diagonal matrix D
using DiagMatrixBlockWellType = Dune::FieldMatrix<Scalar, numWellEq, numWellEq>;
using DiagMatWell = Dune::BCRSMatrix<DiagMatrixBlockWellType>;
// the matrix type for the non-diagonal matrix B and C^T
using OffDiagMatrixBlockWellType = Dune::FieldMatrix<Scalar, numWellEq, Indices::numEq>;
using OffDiagMatWell = Dune::BCRSMatrix<OffDiagMatrixBlockWellType>;
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
// EvalR (Eval), EvalW, EvalRW
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
using EvalWell = DenseAd::Evaluation<double, /*size=*/Indices::numEq + numWellEq>;
using Eval = DenseAd::Evaluation<Scalar, /*size=*/Indices::numEq>;
MultisegmentWellEval(WellInterfaceIndices<FluidSystem,Indices,Scalar>& baseif);
void initMatrixAndVectors(const int num_cells);
void initPrimaryVariablesEvaluation() const;
void assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
DeferredLogger& deferred_logger);
void assembleDefaultPressureEq(const int seg,
WellState& well_state) const;
// assemble pressure equation for ICD segments
void assembleICDPressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger) const;
void assemblePressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger) const;
/// check whether the well equations get converged for this well
ConvergenceReport getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
DeferredLogger& deferred_logger,
const double max_residual_allowed,
const double tolerance_wells,
const double relaxed_inner_tolerance_flow_ms_well,
const double tolerance_pressure_ms_wells,
const double relaxed_inner_tolerance_pressure_ms_well,
const bool relax_tolerance) const;
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x,
BVectorWell& xw) const;
void updatePrimaryVariables(const WellState& well_state) const;
void updateUpwindingSegments();
// updating the well_state based on well solution dwells
void updatePrimaryVariablesNewton(const BVectorWell& dwells,
const double relaxation_factor,
const double DFLimit,
const double max_pressure_change) const;
void computeSegmentFluidProperties(const EvalWell& temperature,
const EvalWell& saltConcentration,
int pvt_region_index,
DeferredLogger& deferred_logger);
EvalWell getBhp() const;
EvalWell getFrictionPressureLoss(const int seg) const;
EvalWell getHydroPressureLoss(const int seg) const;
EvalWell getQs(const int comp_idx) const;
EvalWell getSegmentWQTotal(const int seg) const;
EvalWell getSegmentPressure(const int seg) const;
EvalWell getSegmentRate(const int seg, const int comp_idx) const;
EvalWell getSegmentRateUpwinding(const int seg,
const size_t comp_idx) const;
EvalWell getSegmentSurfaceVolume(const EvalWell& temperature,
const EvalWell& saltConcentration,
const int pvt_region_index,
const int seg_idx) const;
EvalWell getWQTotal() const;
std::pair<bool, std::vector<Scalar> >
getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
DeferredLogger& deferred_logger) const;
double getControlTolerance(const WellState& well_state,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const;
double getResidualMeasureValue(const WellState& well_state,
const std::vector<double>& residuals,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const;
void handleAccelerationPressureLoss(const int seg,
WellState& well_state);
// pressure drop for Autonomous ICD segment (WSEGAICD)
EvalWell pressureDropAutoICD(const int seg,
const UnitSystem& unit_system) const;
// pressure drop for Spiral ICD segment (WSEGSICD)
EvalWell pressureDropSpiralICD(const int seg) const;
// pressure drop for sub-critical valve (WSEGVALV)
EvalWell pressureDropValve(const int seg) const;
void updateWellStateFromPrimaryVariables(WellState& well_state,
const double rho,
DeferredLogger& deferred_logger) const;
// fraction value of the primary variables
// should we just use member variables to store them instead of calculating them again and again
EvalWell volumeFraction(const int seg,
const unsigned compIdx) const;
// F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
EvalWell volumeFractionScaled(const int seg,
const int comp_idx) const;
// basically Q_p / \sigma_p Q_p
EvalWell surfaceVolumeFraction(const int seg,
const int comp_idx) const;
// convert a Eval from reservoir to contain the derivative related to wells
EvalWell extendEval(const Eval& in) const;
const WellInterfaceIndices<FluidSystem,Indices,Scalar>& baseif_;
// TODO, the following should go to a class for computing purpose
// two off-diagonal matrices
mutable OffDiagMatWell duneB_;
mutable OffDiagMatWell duneC_;
// "diagonal" matrix for the well. It has offdiagonal entries for inlets and outlets.
mutable DiagMatWell duneD_;
/// \brief solver for diagonal matrix
///
/// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials...
mutable std::shared_ptr<Dune::UMFPack<DiagMatWell> > duneDSolver_;
// residuals of the well equations
mutable BVectorWell resWell_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
mutable std::vector<std::array<double, numWellEq> > primary_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector<std::array<EvalWell, numWellEq> > primary_variables_evaluation_;
// the upwinding segment for each segment based on the flow direction
std::vector<int> upwinding_segments_;
// the densities of segment fluids
// we should not have this member variable
std::vector<EvalWell> segment_densities_;
// the mass rate of the segments
std::vector<EvalWell> segment_mass_rates_;
// the viscosity of the segments
std::vector<EvalWell> segment_viscosities_;
std::vector<std::vector<EvalWell>> segment_phase_densities_;
std::vector<std::vector<EvalWell>> segment_phase_fractions_;
std::vector<std::vector<EvalWell>> segment_phase_viscosities_;
// depth difference between perforations and the perforated grid cells
std::vector<double> cell_perforation_depth_diffs_;
// pressure correction due to the different depth of the perforation and
// center depth of the grid block
std::vector<double> cell_perforation_pressure_diffs_;
};
}
#endif // OPM_MULTISEGMENTWELL_GENERIC_HEADER_INCLUDED